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Abstract. Data integration is frequently performed between heterogeneous data
sources, requiring that not only a schema, but also the data modelling language in
which that schema is represented must be transformed between one data source
and another.
This paper describes an extension to the hypergraph data model (HDM), used in
the AutoMed data integration approach, that allows constraint constructs found
in static data modelling languages to be represented by a small set of primitive
constraint operators in the HDM. In addition, a set of five equivalence preserv-
ing transformation rules are defined that operate over this extended HDM. These
transformation rules are shown to allow a bidirectional mapping to be defined
between equivalent relational, ER, UML and ORM schemas.
The approach we propose provides a precise framework in which to compare
data modelling languages, and precisely identifies what semantics of a particular
domain one data model may express that another data model may not express.
The approach also forms the platform for further work in automating the pro-
cess of transforming between different data modelling languages. The use of the
both-as-view approach to data integration means that a bidirectional association
is produced between schemas in the data modelling language. Hence a further ad-
vantage of the approach is that composition of data mappings may be performed
such that mapping two schemas to one common schema will produce a bidirec-
tional mapping between the original two data sources.
keywords: conceptual data modelling, mappings, transformations, multiple rep-
resentations.

1 Introduction

The AutoMed data integration system [8, 24] distinguishes itself as being an approach
which has a clear methodology for handling a wide range of static data modelling lan-
guages in the integration process [28], as opposed to the other approaches that assume
integration is always performed in a single common data model. This is achieved by
allowing a user to relate the modelling constructs of a higher level modelling language
such as ER, relational, UML, or ORM, to the constructs in a single lower level common
data modelling language called the hypergraph data model (HDM) [39], i.e. using the
terminology of model management [5] we perform a ModelGen to convert schemas in
the higher level modelling languages into the HDM. Figure 1 illustrates this concept
being applied to four schemas which might appear to be equivalent.
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Fig. 1. Conceptual modelling languages represented in the HDM

In [28] a general approach was proposed showing how the data aspects of higher
level modelling languages were modelled as nodes and edges in the HDM, with the con-
straints of the higher level modelling language being represented by writing constraint
formulae over the HDM. For example, the ER schema in Figure 1 has an entity labelled
E that we represent by a node E in the HDM schema (represented by a black outlined
circle), and the attributes A and B of E are also represented as nodes in the HDM, to-
gether with edges (the thick black lines) associating them to the node representing E.
The fact that each entity instance has only one associated attribute instance in each of
A and B is represented by constraint rules in the HDM (the dash grey boxes, introduced
in [9] and extended in this paper), as is the fact that A is a key attribute of E. Using
the rules for ModelGen presented in Section 2, we will see that the ER, relational and
ORM schemas in Figure 1 all produce the same HDM schema, and the UML schema
produces an HDM schema with one difference in the constraints. In Section 3 we will
describe equivalence preserving rules for the HDM that can be used to map between
equivalent HDM schemas: this example is a case where the two HDM schemas shown
are not equivalent, and hence the rules do not permit us to ‘lose’ the extra id

→ constraint.
The concept of using graphs as an underlying representation for higher level mod-

elling languages has been used in modelling relational schemas [51], and for OO and
ER schemas [49], and we argue is an intuitive assumption to make. It also reduces
all schemas to an irreducible form [19], and in the context of relational databases has
recently been identified as a sixth normal form [13, 12].

This paper extends the approach of [28] to represent the high level modelling lan-
guage constraints using a set of primitive constraint operators on the HDM. This paper
also shows how we may relate the ER, relational, UML and ORM higher level mod-
elling languages — perform intermodel transformations — by the application of five



types of equivalence rules on the HDM and its primitive constraint operators. This work
is a considerable enhancement of our earlier work presented in [9] in that:

1. We give a formal definition of the constraint operators in an extension of the HDM
definition found in [39], and have added an additional constraint operator.

2. We give a set of mapping rules to exactly define how the higher level modelling lan-
guages are converted into these new constraint operators, and in addition we now
review how ORM is modelled using the constraints. We also consider more ad-
vanced modelling language features, such as generalisation hierarchies, look-here
and look-across cardinality constraints, candidate keys, and n-ary relationships.

3. We define how both-as-view (BAV) [30] data integration rules can be generated,
and use the properties of these BAV rules to demonstrate when we have equivalent
higher level schemas, and when there is information loss in the mapping process.

Our approach differs from other work in the area (reviewed in Section 5) in that
we use hypergraphs as the common data modelling language combined with producing
BAV transformations that exactly define the nature of the relationship (equivalence or
non-equivalence) between schemas on a construct by construct basis. Our approach
forms a framework, where the constraints we propose in the HDM, and the equivalence
preserving transformations, can be extended to handle new modelling languages. Thus
we provide a platform for the conversion between any data modelling language, with
the limitation that our current work assumes that the data model must have set-based
semantics. We also leave for future work the consideration of types in the data models:
we make the crude assumption for our current work that the data types match in the
data models being compared. This paper demonstrates the approach being applied by
converting between the major construct types of ER, relational, UML class and ORM
modelling languages, and hence has wide applicability in data modelling.

In addition to providing a mechanism for comparing the expressiveness of mod-
elling languages, the proposed primitive constraints and set of equivalence rules also
forms the basis for a method of automating the translation between modelling lan-
guages, based on descriptions of their constructs. This would involve further develop-
ment of an algorithm that would determine which equivalence rules need to be applied
to the HDM schema of one higher level schema to form a valid HDM schema of another
higher level schema.

The remainder of this paper is structured as follows. Section 2 reviews how to de-
scribe higher level data modelling languages by relating them to the HDM schema. The
HDM language is extended with a set of constraint operators that form a language used
to model the constraints in higher level data modelling languages. Section 3 details how
we approach the transformation between schemas in different modelling languages by
applying equivalence rules to the HDM schemas, thereby relating basic constructs of
the higher level modelling languages with each other. Section 4 considers how some ex-
tended operators of these languages are related. Section 5 discusses some related work,
and we give a summary and discuss future work in Section 6.



2 Describing a Data Modelling Language

We now review the HDM (first defined in [39]), giving slightly modified definitions
that reflect the syntax used in later work on the HDM and the AutoMed implementa-
tion. Then we present an example universe of discourse (UoD), and use it to illustrate
in general how the HDM may be used to represent ER, relational, UML and ORM
schemas. To keep the initial discussion reasonably concise, we leave some advanced
higher level modelling features until Section 4.

We define first the notion of a HDM schema, which is the structure in which data
may be held.

Definition 1 HDM Schema
Given a set of Names that we may use for modelling the real world, an HDM

schema, S, is a triple 〈Nodes,Edges, Cons〉 where:

– Nodes ⊆ {〈〈nn〉〉 | nn ∈ Names}
i.e. Nodes is a set of nodes in the graph, each denoted by its name enclosed in
double chevron marks.

– Schemes = Nodes ∪ Edges
– Edges ⊆ {〈〈ne, s1, . . . , sn〉〉 |

ne ∈ Names∪{ }∧s1 ∈ Schemes∧. . .∧sn ∈ Schemes}
i.e. Edges is a set of edges in the graph where each edge is denoted by its name,
together with the list of nodes/edges that the edge connects, enclosed in double
chevron marks.

– Cons ⊆ {c(s1, . . . , sn) | c ∈ Funcs ∧ s1 ∈ Schemes ∧ . . . ∧ sn ∈ Schemes}
i.e. Cons is a set of boolean-valued functions (i.e. constraints) whose variables
are members of Schemes and where the set of functions Funcs forms the HDM
constraint language.

2

The first three items in Definition 1 define a labelled, directed, nested hypergraph
(a hyperedge is an edge that connects more than two nodes in a graph, and these edges
are nested in the sense that hyperedges can themselves participate in hyperedges). The
last item in Definition 1 will be refined into the constraint language which is one of
the contributions of this paper. We list in Example 1 the contents of an example HDM
schema that we shall later, in Figure 3, show to be equivalent to an ER schema. Note
how the names of edges are sometimes given as the character ‘ ’ representing an un-
named edge, and also note that one of the edges is a nested edge, connecting the node
〈〈result:grade〉〉 to another edge 〈〈result,student,course〉〉.

Example 1 An HDM schema
Nodes = {〈〈ug〉〉, 〈〈ug:ppt〉〉, 〈〈student〉〉, 〈〈student:name〉〉, 〈〈student:sid〉〉,

〈〈result:grade〉〉, 〈〈course〉〉, 〈〈course:code〉〉, 〈〈course:dept〉〉}
Edges = {〈〈 ,ug,ug:ppt〉〉, 〈〈 ,student,student:sid〉〉, 〈〈 ,student,student:name〉〉,

〈〈result,student,course〉〉, 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉,
〈〈 ,course,course:dept〉〉, 〈〈 ,course,course:code〉〉}

2



The fourth component of the HDM schema definition states any extra constraints
that all instances of the schema must satisfy. Note that the definition of constraints in
[39] makes no restrictions on what the constraint language is. This papers proposes
a restricted constraint language, which we show is able to represent constraints in
higher level modelling languages, and forms a basis for writing transformations be-
tween schemas in those higher level modelling languages. Before defining these con-
straints we give in Definition 2 a definition of an instance of a schema, simplified from
the definition in [39].

Definition 2 HDM instance
Given an HDM schema S, an instance I of S is a structure for which there exists a

function ExtS,I : Schemes → P (Seq(V als)) where V als is the set of values we wish
to model as being in the domain of our data model, Seq gives any sequence of those
values, and P forms the power set of those sequences. We also have the restriction that:

1. each tuple 〈a1, . . . , an〉 ∈ ExtS,I(〈〈ne, s1, . . . , sn〉〉), ai ∈ ExtS,I(si) for all 1 ≤
i ≤ n;

2. for every c ∈ Cons, the expression c(v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)) evaluates
to true, where v1, . . . , vn are the variables of c.

We call ExtS,I(s) the extent of scheme s ∈ Schemes. 2

Note that item (1) of Definition 2 enforces that the extent of an edge is drawn from
values present in the extents of nodes and other edges it connects. Note that no restric-
tion is put on the extent of nodes: this would form the basis of typing in the HDM,
where a type T ⊆ P (Seq(V als)) is associated to each s ∈ Schemes such that for all I
ExtS,I(s) ⊆ T . Also note that the semantics of the schema are set based, and hence we
at present can only use the HDM to accurately model data modelling languages with
set based semantics. Dealing with typing of data, and bag or list based semantics will
be the subject of our future work.

The combination of HDM schema and instance, together with an extension mapping
function Ext forms what we will term an HDM data source in Definition 3.

Definition 3 HDM data source
A data source is a triple 〈S, I, ExtS,I〉 where S is a schema, I is an instance of S

and ExtS,I is an extension mapping from S to I . 2

We now introduce to the HDM a set of six primitive constraints that we are propos-
ing as a practical solution to model the constraints of the higher level modelling lan-
guage in an analogous manner to how the nodes and edges of the HDM models the data
aspects of higher level modelling language. The set of six constraint operators might
need to be extended in the future to handle a wider range of high level modelling lan-
guage constructs, but we will demonstrate in this paper that our six constraints can deal
with a wide range of modelling concepts used in practice.

In the following descriptions, any variable beginning with s denotes a member of
Schemes. For each definition we give both a functional form (e.g. inclusion(s1, s2),
useful for some of our mapping rules that talk in general about a constraint op(. . .))



and an equivalent infix form (e.g. s1 ⊆ s2, which is used in the diagrams and in most
of the descriptions). When using these definitions later, we assume that where a tuple
of schemes 〈s1, . . . , sm〉 is used in a constraint definition, then s1 may be used as the
singleton tuple 〈s1〉. For example, we can write s1 ¢ s as a shorthand for 〈s1〉 ¢ s.
Several of the constraint definitions use a project function defined in Definition 4 that
provides a method of producing a kind of view of an HDM edge restricted to contain a
subset of the nodes or edges that the edge connects.

Definition 4 HDM project
The HDM project function π(〈sx, . . . , sy〉, s, t), which takes a tuple of schemes

〈sx, . . . , sy〉 that must appear in edge s, together with a tuple t that appears in the
extent of s, returns the values in tuple t that corresponds to the schemes 〈sx, . . . , sy〉:

π(〈sx, . . . , sy〉, 〈〈ne, s1, . . . , sx, . . . , sy, . . . , sn〉〉,
〈a1, . . . , ax, . . . , ay, . . . , an〉) = 〈ax, . . . , ay〉

If the tuple t is omitted, a set of values is obtained:
ExtS,I(π(〈sx, . . . , sy〉, 〈〈ne, s1, . . . , sx, . . . , sy, . . . , sn〉〉)) = {〈sx, . . . , sy〉 |

〈s1, . . . , sx, . . . , sy, . . . , sn〉 ∈ ExtS,I(〈〈ne, s1, . . . , sx, . . . , sy, . . . , sn〉〉)} 2

Definition 5 HDM Constraints The minimum HDM constraint language should com-
prise of Funcs={inclusion,exclusion,union,mandatory,unique,reflexive}, where the six
functions have the following semantics:

1. inclusion(s1, s2) ≡ s1 ⊆ s2

States that the extent of s1 is always a subset of the extent of s2, i.e. for all I ,
ExtS,I(s1) − ExtS,I(s2) = ∅

2. exclusion(s1, . . . , sn) ≡ s1 6∩ . . . 6∩ sn

for all 1 ≤ x < y ≤ n, and for all I , ExtS,I(sx) ∩ ExtS,I(sy) = ∅
3. union(s, s1, . . . , sn) ≡ s = s1 ∪ . . . ∪ sn

for all I , ExtS,I(s) = ExtS,I(s1) ∪ . . . ∪ ExtS,I(sn)
4. mandatory(〈s1, . . . , sm〉, s) ≡ 〈s1, . . . , sm〉¤ s

States that every combination of the values in extents of s1, . . . , sm must appear at
least once in the extent of edge s that connects them, i.e. for all I
{〈a1, . . . , am〉 | a1 ∈ ExtS,I(s1) ∧ . . . ∧ am ∈ ExtS,I(sm)}

− {〈π(s1, s, t), . . . , π(sm, s, t)〉 | t ∈ ExtS,I(s)} = ∅
5. unique(〈s1, . . . , sm〉, s) ≡ 〈s1, . . . , sm〉¢ s

States that every combination of the values in extents of s1, . . . , sm must appear at
most once in the extent of edge s that connects them, i.e. for all I
{t | t ∈ ExtS,I(s) ∧ t′ ∈ ExtS,I(s) ∧ t 6= t′ ∧

π(s1, s, t) = π(s1, s, t
′) ∧ . . . ∧ π(sm, s, t) = π(sm, s, t′)} = ∅

6. reflexive(s1, s) ≡ s1

id
→ s

If an instance of scheme s1 appears in edge s, then one of the instances of s must
be an identity tuple, i.e. for all I:
{π(s1, s, t) | t ∈ ExtS,I(s)} −

{π(s1, s, t) | t ∈ ExtS,I(s) ∧ t = 〈π(s1, s, t), π(s1, s, t)〉} = ∅ 2



Example 2 may be combined with Example 1 to give a complete HDM as repre-
sented diagrammatically in Figure 3(b). The constraint language might appear too fine
grain, but we will show in Section 3 that when writing inter model transformations it
is useful to be able to test for, to add or to delete constraints expressed at this level
of detail. Also, the six constraint operators defined here are not meant to be definitive:
handling other modeling language constructs in addition to those presented later in this
section might require us to introduce additional constraint primitives.

Example 2 Constraints in an HDM schema
Cons = {〈〈ug〉〉¢ 〈〈 ,ug,ug:ppt〉〉, 〈〈ug〉〉¤ 〈〈 ,ug,ug:ppt〉〉,

〈〈ug:ppt〉〉¤ 〈〈 ,ug,ug:ppt〉〉, 〈〈ug〉〉 ⊆ 〈〈student〉〉,
〈〈student〉〉¢ 〈〈 ,student,student:sid〉〉, 〈〈student〉〉¤ 〈〈 ,student,student:sid〉〉,
〈〈student:sid〉〉¤〈〈 ,student,student:sid〉〉, 〈〈student〉〉¢〈〈 ,student,student:name〉〉,

〈〈student〉〉¤〈〈 ,student,student:name〉〉, 〈〈student〉〉
id
→〈〈 ,student,student:name〉〉,

〈〈student:name〉〉¤ 〈〈 ,student,student:name〉〉,
〈〈result:grade〉〉¤ 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉,
〈〈result,student,course〉〉¢ 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉,
〈〈course〉〉¢ 〈〈 ,course,course:dept〉〉, 〈〈course〉〉¤ 〈〈 ,course,course:dept〉〉,
〈〈course:dept〉〉¤ 〈〈 ,course,course:dept〉〉, 〈〈course〉〉¢ 〈〈 ,course,course:code〉〉,

〈〈course〉〉¤ 〈〈 ,course,course:code〉〉, 〈〈course〉〉
id
→ 〈〈 ,course,course:code〉〉,

〈〈course:code〉〉¤ 〈〈 ,course,course:code〉〉} 2

Most of these constraint operators have been used before in the context of de-
scribing single modelling languages. In particular, mandatory and unique constraints
(though more limited in definition) have been used in a hypergraph model for relational
schemas in [51], and inclusion constraints appear in [42]. However the combination of
our mandatory, unique and reflexive constraints give a rich framework in which to ex-
press various notions of cardinality constraints and keys found in higher level modelling
languages.

To illustrate these constraints, consider from the HDM schema in Example 1 the
nodes 〈〈student〉〉 and 〈〈student:name〉〉 connected by edge 〈〈 ,student,student:name〉〉.
As will be discussed in depth later, this might be used to model an ER entity called stu-
dent with an attribute name. Suppose we have five data sources with the same schema
S but different instances I1, I2, I3, I4, I5 for which:

x ∈ 1, 2, 3, 4 : ExtS,Ix
(〈〈student〉〉) = {1, 2}

ExtS,I5
(〈〈student〉〉) = {‘Peter’, ‘Mike’}

x ∈ 1, 2, 3, 4, 5 : ExtS,Ix
(〈〈student:name〉〉) = {‘Peter’, ‘Mike’}

ExtS,I1
(〈〈 ,student,student:name〉〉) = {〈1, ‘Peter’〉, 〈1, ‘Mike’〉, 〈2, ‘Mike’〉}

ExtS,I2
(〈〈 ,student,student:name〉〉) = {〈2, ‘Peter’〉, 〈2, ‘Mike’〉}

ExtS,I3
(〈〈 ,student,student:name〉〉) = {〈1, ‘Mike’〉, 〈2, ‘Mike’〉}

ExtS,I4
(〈〈 ,student,student:name〉〉) = {〈1, ‘Peter’〉, 〈2, ‘Mike’〉}

ExtS,I5
(〈〈 ,student,student:name〉〉) = {〈‘Peter’, ‘Peter’〉, 〈‘Mike’, ‘Mike’〉}

To state that every instance of 〈〈student〉〉 must appear in the edge (and hence that
I2 is invalid), we use the mandatory constraint:

〈〈student〉〉¤ 〈〈 ,student,student:name〉〉



For the ER model, this constraint would be used when the attribute is mandatory for
the entity (i.e. to state that each student must have a name). To state that every instance
of 〈〈student〉〉 must appear no more than once in the edge (and hence that I1 is invalid),
we use the unique constraint:

〈〈student〉〉¢ 〈〈 ,student,student:name〉〉
For the ER model, this constraint would be used when the attribute is not multi-

valued for the entity (i.e. to state that each student has no more than one name). The two
above constraints together model that each instance of 〈〈student〉〉 must appear exactly
once in the edge, and hence for the ER model a mandatory and single valued attribute
(i.e. to state that each student has exactly one name).

We will illustrate as we consider different higher level modelling languages how
these general notions of cardinality may be used to represent optional and mandatory
attributes, and also both look-here and look-across [45, 21] cardinality constraints on
relationships/associations. The term look-across is used to denote the use of cardinal-
ity constraints where the cardinality written against entity xi in an n-ary relationship
between entities x1, . . . , xn restricts the participation of the other n − 1 entities in the
relationship. The term look-here is used to denote cardinality constraints that restrict
the participation of xi in the relationship.

Here, let us consider the general notion of a key, and how it is represented using
our HDM constraints. If we want to model that 〈〈student:name〉〉 is a candidate key
for 〈〈student〉〉 — that is to say that each value in 〈〈student:name〉〉 is in a one-to-one
correspondence with a value in 〈〈student〉〉 (and thus that only I4 and I5 are valid out of
the five instances above) — we must in addition make 〈〈student:name〉〉 also be 1:1 in
the edge:

〈〈student:name〉〉¢ 〈〈 ,student,student:name〉〉
〈〈student:name〉〉¤ 〈〈 ,student,student:name〉〉
Thus in the ER case, name would be unique to each student. If we want to model

that 〈〈student:name〉〉 is the primary key for 〈〈student〉〉 — that is to say that the values
in 〈〈student:name〉〉 equal those in 〈〈student〉〉 (thus only I5 is valid) — we must make
〈〈student〉〉 be reflexive in the edge:

〈〈student〉〉
id
→ 〈〈 ,student,student:name〉〉

In general, reflexive, mandatory and unique together enforce that the entity has the
same values as the attribute, and thus that the extent of the entity is the key values of
the entity. This is because mandatory and unique at both ends of an edge enforce a one-
to-one mapping, and the reflexive constraint means that this one-to-one mapping is an
identity function. By contrast, lack of the reflexive constraint would be used when the
entity has as its extent a set of object identifiers.

Note that we could have alternatively put the reflexive constraint on the other node
as:

〈〈student:name〉〉
id
→ 〈〈 ,student,student:name〉〉

Also note that the unique constraint on the opposite end of the edge to the reflex-
ive constraint is redundant, since it is implied by the other constraints. Hence we draw
the equivalences shown in Figure 2(a) that will be used during intermodel transforma-
tion, where one higher level modelling language might happen to place constraints in a
different but equivalent manner to another higher level modelling language.
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Fig. 2. Fundamental equivalences on HDM constraints

Compound keys will require that we have a definition of an edge natural join given
in Definition 6. This will be used to say that the reflexive constraint applies to more that
one node. The introduction of the natural join means that we have a variation of the
equivalence in Figure 2(a) given in Figure 2(b) that applies across an edge natural join.

Definition 6 Natural join between HDM edges
A view over HDM edges may be formed by joining edges together to form a new

virtual edge:
〈〈E,A,B1, . . . , Bn〉〉 1 〈〈E,A,C1, . . . , Cm〉〉 = 〈〈E,A,B1, . . . , Bn, C1, . . . , Cm〉〉
The extent of the virtual edge is defined by a natural join over the extent of the two

joined edges:
ExtS,I(〈〈E,A,B1, . . . , Bn, C1, . . . , Cm〉〉) = {〈x, y1, . . . , yn, z1, . . . , zm〉

| 〈x, y1, . . . , yn〉 ∈ ExtS,I(〈〈E,A,B1, . . . , Bn〉〉) ∧
〈x, z1, . . . , zm〉 ∈ ExtS,I(〈〈E,A,C1, . . . , Cm〉〉)} 2

2.1 An Example UoD and Four Schemas

Figures 3(a), 4(a), 5(a) and 6(a) show four data models, in ER, relational, UML and
ORM data modelling languages. These are designed to cover the same UoD, and as will
be shown later, three of them have the same information capacity [32]. The schemas rep-
resent a record of students, the courses that they sit, and the grades they obtain for those
courses. Some students are undergraduates, and each ug has an associated personal pro-
gramming tutor ppt that other students do not have. The use of underlining in the rela-
tional and ER schemas indicates what are key attributes, and a question mark follows a
nullable attribute in those schemas. In the relational schema, foreign keys are shown by



using an implication between the foreign key columns and the referenced table columns.
In the ER schema this foreign key may either be represented by a relationship (for ex-
ample the foreign keys result.name → student.name and result.code → course.code
are represented in the ER result relationship) or by a subset (for example the foreign
key ug.name → student.name is represented by a subset between the student and ug
entities).

To describe how we map between high level modelling languages and the HDM,
we use a simple production rule language as described in Definition 7.

Definition 7 HDM Production Rules Higher level modelling language constructs are
transformed into the HDM using production rules of the form:
〈high level construct name〉 〈high level construct scheme〉; 〈HDM scheme〉∗

〈condition〉
1
⇒ 〈HDM constraint〉

1

...
〈condition〉n ⇒ 〈HDM constraint〉n

Where

– 〈high level construct scheme〉 is the structure used to represent a higher level model
construct of type 〈high level construct name〉,

– 〈HDM scheme〉 is the list of zero or more HDM nodes or edges used to represent
those aspects 〈high level construct scheme〉 that have an extent. Zero such schemes
will be denoted using ⊥, and the last 〈HDM scheme〉 is used to return the entire
extent of the 〈high level construct scheme〉

– 〈condition〉 is a boolean expression over elements of of 〈high level construct
scheme〉, which when satisfied, causes 〈HDM constraint〉 to be added to the 〈HDM
scheme〉s. 2

2.2 Describing an ER Modelling Language in the HDM

When the HDM is used to model a higher level modelling language, each construct
in that language must be classified as being one of four types, each of which imply a
different representation in the HDM. We explain how this methodology (first presented
in [28]) is applied to an ER modelling language (which we describe here, see [45, 35]
for surveys of variations of ER modelling languages), and illustrate our discussions by
showing how the methodology may take the ER schema of Figure 3(a) and produce
the HDM schema of Figure 3(b). Note that in the HDM diagrams, HDM nodes are
represented by white circles with thick outlines, and HDM edges are represented by
thick black lines. The HDM constraint language is represented by grey dashed boxes
connected by grey lines to the nodes and edges to which the constraint applies. Edges
pass through black circles in a straight line, hence any edge or constraint applying to an
edge meets that edge at a angle.

A summary of the AutoMed high level schemes that represent the high level ER
schema in textual format are listed in Table 1, along with the class each belongs to. A
similar table could be generated for the relational, UML and ORM models considered
in the following sections. The production rules presented in this sub-section map these
high level model schemes into the HDM schema already given in Examples 1 and 2.
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Fig. 3. An ER schema and its equivalent HDM schema

class construct scheme
nodal entity 〈〈student〉〉
link-nodal attribute 〈〈student,name,notnull〉〉
constraint key 〈〈student,name〉〉
link-nodal attribute 〈〈student,sid,notnull〉〉
nodal entity 〈〈ug〉〉
link-nodal attribute 〈〈ug,ppt,notnull〉〉
constraint subset 〈〈student,ug〉〉

class construct scheme
nodal entity 〈〈course〉〉
link-nodal attribute 〈〈course,code,key〉〉
constraint key 〈〈course,code〉〉
link-nodal attribute 〈〈course,dept,notnull〉〉
link relationship 〈〈result,student,0:N,course,0:N〉〉
link-nodal attribute 〈〈result,grade,null〉〉

Table 1. AutoMed high level model schemes for the ER example schema

The methodology in [28] categorises the constructs of a higher level model as being
nodal, link-nodal, link, or constraint. We illustrate these categories by considering how
the constructs of an ER modelling language will be handled.

Nodal A nodal construct is one that may appear in isolation in a schema, such as an
ER model entity. Using the AutoMed data integration system [8], such constructs are
defined by giving a prototype scheme that must contain the name of a HDM node used



to represent that construct. Hence we represent the ER entity student by the schema
〈〈student〉〉.

The production rule for an ER entity 〈〈E〉〉 is very simple, since it states that each
entity with scheme 〈〈E〉〉 maps to a single HDM node 〈〈E〉〉, and has no constraints:
entity 〈〈E〉〉; 〈〈E〉〉

Link A link construct is one that associates other constructs with each other, and which
has an extent which is drawn from those constructs, such as an ER relationship con-
struct. In AutoMed, we represent ER relationships by the scheme comprising of the
name of the HDM edge used to represent the construct, together with pairs of the entity
names and cardinality constraints. For example, we represent the ER relationship result
in Figure 3(a) by the scheme 〈〈result, student, 0:N, course, 0:N〉〉. The production rule
uses auxiliary rules to generate the constraints in the HDM necessary to represent the
cardinality constraints in the ER schema. Assuming that our ER model uses look-here
semantics [45, 21], we need one line for each entity Ex that generates as appropriate ¤
and ¢ using a function generate card() defined in Definition 8.
relationship 〈〈R,E1, L1:U1, . . . , En, Ln:Un〉〉; 〈〈R,E1, . . . , En〉〉

true ⇒ generate card(E1, 〈〈R,E1, . . . , En〉〉, L1, U1)
...

true ⇒ generate card(En, 〈〈R,E1, . . . , En〉〉, Ln, Un)

Definition 8 Generation of constraints representing cardinality
This function generates cardinality constraints between a set of nodes or edges

{NE1, . . . , NEn} ∈ Schemes and E ∈ Edges, where L may be either 0 or 1, and
U may be 1 or *.
generate card (〈NE1, . . . , NEn〉, E, L, U) ; ⊥

L = 1 ⇒ 〈NE1, . . . , NEn〉¤ E
U = 1 ⇒ 〈NE1, . . . , NEn〉¢ E 2

Note that the rule in Definition 8 takes as its first argument a tuple of nodes and
edges NE1, . . . , NEn that must appear in the edge E that is its second argument, and
then produces mandatory and unique constraints to determine how many times a partic-
ular combination of values from the extent of NE1, . . . , NEn may appear in the extent
of E.

Applying our production rule to the relationship 〈〈result, student, 0:N, course, 0:N〉〉
produces an edge 〈〈 , result, student〉〉 to represent its extent. The auxiliary constraint
rules will produce no constraints, since neither of the guards within the definition of
generate card will match L = 0 or U = *.

Link-Nodal A link-nodal construct is one that has associated values, but may only
exist when associated with some other construct. They are represented in the HDM by
an edge associating a new node with some existing node or edge. For example, ER
attributes are link-nodal constructs, and the name attribute of the entity student is
represented in AutoMed by the scheme 〈〈student, name, notnull〉〉. The production rule
for ER attributes creates a node and edge.



attribute 〈〈E,A,N〉〉; 〈〈E:A〉〉, 〈〈 , E,E:A〉〉
true ⇒ generate card(〈〈E:A〉〉, 〈〈 , E,E:A〉〉, 1, *)
N = notnull ⇒ generate card(〈〈E〉〉, 〈〈 , E,E:A〉〉, 1, 1)
N = null ⇒ generate card(〈〈E〉〉, 〈〈 , E,E:A〉〉, 0, 1)
Thus the production rule when applied to the ER attribute 〈〈course,dept,notnull〉〉

produces the node 〈〈course:dept〉〉 and the edge 〈〈 ,course,course:dept〉〉 to represent the
extent of the attribute. The first auxiliary constraint rule produces 〈〈course:dept〉〉 ¤
〈〈 ,course,course:dept〉〉, the second produces 〈〈course〉〉¤ 〈〈 ,course,course:dept〉〉 and
〈〈course〉〉 ¢ 〈〈 ,course,course:dept〉〉 (since both guards in the generate card are met),
and then the last rule fails to match in the guard.

Note that since the grade attribute is optional, we obtain just two constraints when
the production rule is used on 〈〈result,grade,null〉〉:
〈〈result:grade〉〉¤ 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉
〈〈result,student,course〉〉¢ 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉

Note that in our modelling of the ER model (and relational and UML languages),
the fact that attribute names are prefixed by the associated entity name reflects a deliber-
ate choice made when defining the construct. One could alternatively say that attribute
names are globally unique, which would change the HDM graph to have just one node
〈〈name〉〉 to represent both the 〈〈student, name, notnull〉〉 and 〈〈ug, name, notnull〉〉 rela-
tional columns, but this would not give the correct semantics for a normal ER model.
The alternative global naming choice will be used in modelling the value types of ORM
models.

In Figure 3(b) it should be noted that the syntax is not ambiguous, but does need
careful reading. Each¤ or¢ always has a node or edge on its left hand side that appears
in the edge on its right hand side. We use this fact to ignore which ‘side’ we connect ¤
and ¢ constraints to in the diagram. This makes the diagrams more tidy in appearance.
(Note that this is different from the approach we followed in our earlier work [9]).
Therefore the 〈〈course:dept〉〉 to 〈〈 ,course,course:dept〉〉 mandatory constraint is drawn
using ¤ in the constraint box.

Constraint A constraint construct is one that has no associated extent, but instead
limits the extent of the constructs it connects to. An example of a constraint construct
is the ER model subset relationship. For example, the subset between ug and student
is represented in AutoMed by the scheme 〈〈student, ug〉〉.
subset 〈〈E,Es〉〉; ⊥

true ⇒ 〈〈Es〉〉 ⊆ 〈〈E〉〉
ER generalisations are another example of constraint constructs. For example, a

generalisation that specified the children entities 〈〈E1〉〉, . . . , 〈〈En〉〉 are disjoint subsets
of some parent entity 〈〈E〉〉 could be defined by the following rule:
generalisation 〈〈E,E1, . . . , En〉〉; ⊥

true ⇒ 〈〈E1〉〉 ⊆ 〈〈E〉〉

⇒
...

true ⇒ 〈〈En〉〉 ⊆ 〈〈E〉〉
true ⇒ 〈〈E1〉〉 6∩ . . . 6∩ 〈〈En〉〉



Our example ER schema in Figure 3(a) contains no generalisations, but we will dis-
cuss and compare advanced modelling constructs of various data modelling languages
in Section 4.

The final constraint in our ER model is the definition of the key of an entity, which
serves to denote the set of its attributes that may be used to identify instances of the
attribute.
key 〈〈E,A1, . . . , An〉〉; ⊥

true ⇒ 〈〈E〉〉
id
→ 〈〈 , E,E:A1〉〉 1 . . . 1 〈〈 , E,E:An〉〉

The constraint limits the instances of the entity to be an identity with the join of
its key attributes (we will give an example of how this type of constraint works when
looking at the relational result table in the next section).

2.3 Describing relational schemas in the HDM

ug
name ppt
Mary NR
Jane SK

student
name sid
Mary 1
John 2
Jane 3
Fred 4

course
code dept
DB CS
Fin CS
Geo Maths

result
code name grade?
DB Mary A
Fin Jane C
Fin Fred null
Geo Fred A
Geo John B

ug.name →
student.name

result.name →
student.name

result.code →
course.code

(a) Relational database schema and data
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(b) HDM representation of relational database schema

Fig. 4. A relational schema for the student-course database



Having reviewed the general methodology for representing higher level modelling
languages in the HDM in the previous subsection, we will now apply the methodology
to the relational schema. Relational model tables are nodal constructs, and hence we
represent the table student by the scheme 〈〈student〉〉, and the table result by 〈〈result〉〉.
The production rule for translating such schemes into the HDM is as follows.
table 〈〈T 〉〉; 〈〈T 〉〉

Relational model columns are link-nodal constructs, and hence are modelled by a
scheme containing a HDM node that represents the construct it depends on, followed
by the name of the HDM node that represents the column, followed by the constraint
on whether the attribute may be null. For example, the name column of table student is
represented by the scheme 〈〈student, name, notnull〉〉. In the HDM, this becomes a node
〈〈student:name〉〉 to represent values of the column/attribute, and the nameless edge
〈〈 ,student,student:name〉〉 to represent the association of these values to table/entity
〈〈student〉〉.
column 〈〈T,C,N〉〉; 〈〈T :C〉〉, 〈〈 , T, T :C〉〉

true ⇒ generate card(〈〈T :C〉〉, 〈〈 , T, T :C〉〉, 1, *)
N = notnull ⇒ generate card(〈〈T 〉〉, 〈〈 , T, T :C〉〉, 1, 1)
N = null ⇒ generate card(〈〈T 〉〉, 〈〈 , T, T :C〉〉, 0, 1)
The definition of relational columns and ER attributes are very similar, and as can

be seen by comparing Figures 4 and 3, produce similar results in the HDM.
The primary key construct of the relational model is a constraint construct. The

constraint specifies that the natural join between its key columns gives the extent of the
table. Although a slightly unconventional notion of primary key, this definition fits well
with the sixth normal form [13, 12], since that normalises tables to have one table for
the primary key columns, and then an additional table for each non-key column of the
pre-normalised table. The schema of a constraint simply needs to list the table and the
columns. For example, the primary key of 〈〈result〉〉 would be represented in the HDM
by 〈〈result〉〉

id
→ (〈〈 ,result,result:code〉〉 1 〈〈 ,result,result:name〉〉). The production rule

to produce the HDM constraints is as follows:
primary key 〈〈T,C1, . . . , Cn〉〉; ⊥

true ⇒ 〈〈T 〉〉
id
→ 〈〈 , T, T :C1〉〉 1 . . . 1 〈〈 , T, T :Cn〉〉)

Since any key column must also be a notnull column in a valid relational schema,
this rule need only add the fact that the join of the edges leading to nodes represent-
ing key columns is reflexive. Since the table will be connected to these edges using
mandatory and unique, it follows that the join is also mandatory and unique, as shown
for the result node in Figure 4(b). For the primary key scheme 〈〈result,name,code〉〉

for the result table, the production rule generates the reflexive constraint 〈〈result〉〉
id
→

〈〈 ,result,result:code〉〉 1 〈〈 ,result,result:name〉〉. For example, with the relational data
shown in Figure 4(a), this constraint along with the already stated mandatory and unique
constraints enforce the following type of instantiation of the 〈〈result〉〉 node and key
edges:

〈〈result〉〉 = {〈DB,Mary〉, 〈Fin, Jane〉, 〈Fin,Fred〉, . . . }
〈〈 ,result,result:name〉〉 =

{〈〈DB,Mary〉,Mary〉, 〈〈Fin, Jane〉, Jane〉, 〈〈Fin,Fred〉,Fred〉, . . . }



〈〈 ,result,result:code〉〉 =
{〈〈DB,Mary〉,DB〉, 〈〈Fin, Jane〉,Fin〉, 〈〈Fin,Fred〉,Fin〉, . . . }

We represent the foreign key constraint by the scheme made up of a name for the
constraint, the table and column(s) that are the foreign key, and the table and column(s)
of the referenced table.
foreign key 〈〈FK, T,C1, . . . , Cn, Tf , Cf1

, . . . , Cfn
〉〉; ⊥

true ⇒ π〈〈T :C1〉〉,...,〈〈T :Cn〉〉(〈〈 , T, T :C1〉〉 1 . . . 1 〈〈 , T, T :Cn〉〉) ⊆

π〈〈Tf :Cf1
〉〉,...,〈〈Tf :Cfn〉〉

(〈〈 , Tf , Tf :Cf1
〉〉 1 . . . 1 〈〈 , Tf , Tf :Cf1

〉〉)

The somewhat complex constraint simply states that the join of the columns listed
in T is a subset of the join of the columns in Tf . For the common case where foreign
keys are not compound keys (i.e. n = 1), the constraint would simplify to 〈〈T :C1〉〉 ⊆
〈〈Tf :Cf1

〉〉 For example, the foreign key between ug and student is represented by the
scheme 〈〈ug fk, ug, name, student, name〉〉. Using the production rule, this scheme be-
comes 〈〈ug:name〉〉 ⊆ 〈〈student:name〉〉 in the HDM.

Finally, the relational candidate key takes a similar definition to primary key, except
that all that is established is a mandatory and a unique association between the table and
a join of the candidate key columns.
candidate key 〈〈T,C1, . . . , Cn〉〉; ⊥

true ⇒ 〈〈T 〉〉¢ (〈〈 , T, T :C1〉〉 1 . . . 1 〈〈 , T, T :Cn〉〉)
true ⇒ 〈〈T 〉〉¤ (〈〈 , T, T :C1〉〉 1 . . . 1 〈〈 , T, T :Cn〉〉)
true ⇒ (π〈〈T :C1〉〉,...,〈〈T :Cn〉〉(〈〈 , T, T :C1〉〉 1 . . . 1 〈〈 , T, T :Cn〉〉))¢

(〈〈 , T, T :C1〉〉 1 . . . 1 〈〈 , T, T :Cn〉〉)
The last line ensures that the combination of columns in the candidate key appears

just once in the edge formed by the join of the candidate key column edges. In the
common case where the candidate key is not compound (i.e. n = 1), the last con-
straint simplifies to 〈〈T :C1〉〉 ¢ 〈〈 , T, T :C1〉〉. Thus if we added the new candidate key
〈〈student,sid〉〉 to the example relational schema, then we would add to our existing
relation HDM a 〈〈student:sid〉〉¢ 〈〈 ,student,student:sid〉〉 constraint.

2.4 Describing UML in the HDM

UML classes are nodal constructs, and hence each UML class scheme 〈〈C〉〉 maps to a
single node 〈〈C〉〉. The extent of 〈〈C〉〉 is the set of unique object identifiers (OID) of
the class.
class 〈〈C〉〉; 〈〈C〉〉

The definition of n-ary associations in UML states that the multiplicity, L..U , of
a role, R, defines the number of instances of the class C that are associated with a
particular set of values of the other classes in the association A. Thus using ER termi-
nology, it has look-across semantics [45, 21], and hence generate card() is called for
each role class with all the classes except the role class. We also make the assumption
that * is simply a shorthand for 0..*, and any single number n is a shorthand for n..n
(for example, in UML, one writes 1 as a shorthand for 1..1).



name
sid

student
ppt

ug

grade[0..1]

result

code
dept

course
has
* result

exam

*

(a) A UML class diagram of the student-course database

ug

ug:
ppt

¤

¢

¤

student:
name

¤

student

¤

¢

student:
sid

¤

¢

¤

⊆

¢

result:
grade

¤

result:has:exam

course:
code

¤

course

¤

¢

course:
dept

¤

¢

¤

(b) HDM representation of the UML Schema

Fig. 5. A UML schema and its equivalent HDM schema

association〈〈A,R1, C1, L1..U1, . . . , Rn, Cn, Ln..Un〉〉;〈〈A:R1: . . . :Rn, C1, . . . , Cn〉〉
true ⇒ generate card(〈C2, . . . , Cn〉, 〈〈A:R1: . . . :Rn, C1, . . . , Cn〉〉, L1, U1)

...
true ⇒ generate card(〈C1, . . . , Cn−1〉, 〈〈A:R1: . . . :Rn, C1, . . . , Cn〉〉, Ln, Un)
For example, the UML association between student and course has the scheme

〈〈result,has,student,0..*,exam,course,0..*〉〉, and the production rule maps this to the
HDM edge 〈〈result:has:exam,student,course〉〉, with no constraints. Note that the label
of the HDM edge is A:R1: . . . :Rn, which encodes the various labels HDM gives the
association in a single HDM identifier. Thus the result association with role names ‘has’
and ‘exam’ gets the HDM edge name result:has:exam.

UML attributes are link-nodal constructs attached to CA, which is a UML class or
a UML association, and hence the production rule takes a similar form to that for ER
attributes or relational columns. We make the same assumptions about shorthands for
the attribute multiplicity as we did for association multiplicity, as well as noting that



the absence of explicit multiplicity means that 1..1 is assumed. Thus the sid attribute of
student has the scheme 〈〈student,sid,1..1〉〉.
attribute 〈〈CA,A,L..U〉〉; 〈〈CA:A〉〉, 〈〈 , CA,CA:A〉〉

true ⇒ generate card(〈〈CA:A〉〉, 〈〈 , CA,CA:A〉〉, 1, *)
L..U ⇒ generate card(〈〈CA〉〉, 〈〈 , CA,CA:A〉〉, L, U)
Note that UML association classes are directly supported by these definitions of

association and attribute. An association class is simply an association that has one or
more attributes placed upon it, each UML attribute becoming an HDM node with a
nested edge that connects that node to the HDM edge that represents the association.

UML generalisations have a sophisticated constraint system that specifies that the
various classes or associations that are children of a parent class or association maybe
overlapping or disjoint, and maybe complete or incomplete. The first and last of these
keywords are ‘noise’ in the sense that they add nothing in addition to an unlabelled
generalisation. The other two add an exclusion constraint and a union constraint.
generalisation 〈〈C,C1, . . . , Cn, D〉〉; ⊥

true ⇒ 〈〈C1〉〉 ⊆ 〈〈C〉〉

⇒
...

true ⇒ 〈〈Cn〉〉 ⊆ 〈〈C〉〉
disjoint ∈ D ⇒ 〈〈C1〉〉 6∩ . . . 6∩ 〈〈Cn〉〉
complete ∈ D ⇒ 〈〈C〉〉 = 〈〈C1〉〉 ∪ . . . ∪ 〈〈Cn〉〉

2.5 Describing the ORM in the HDM

From our analysis of the ER, relational and UML modelling languages, it may seem
‘obvious’ that ORM entity types should be modelled as nodal constructs while value
types should be modelled as link-nodal constructs. However, due to ORM’s rich seman-
tics, the similarity of value type and entity type roles in fact types, and a value-type’s
ability to play multiple roles in fact types, it is correct to model both value types and
entity types using an HDM nodal construct type.

Each entity type 〈〈E〉〉 maps to a single node 〈〈E〉〉. The extent of entity type 〈〈E〉〉
is the extent of its primary reference mode while the extent of a value type 〈〈V 〉〉 is just
the ORM value type’s set of values. Hence we have the simple definitions:
entity type 〈〈E〉〉; 〈〈E〉〉
value type 〈〈V 〉〉; 〈〈V 〉〉

An ORM n-ary fact type is an association between n objects where each object is
an entity type, value type, or objectified fact type. A fact type’s extent is drawn from the
objects it associates and is hence modelled in the HDM as a link construct. The scheme
for the ORM fact type should describe the name FT of the fact type (if any) along with
the role name N (if any), role object R, and the mandatory nature of the object type
M in the role. Hence the fact type between 〈〈student〉〉 and 〈〈course〉〉 has the scheme
〈〈result,has,student, ,exam,course, 〉〉 and the fact type between 〈〈student〉〉 and 〈〈sid〉〉
has scheme 〈〈 ,student, ,•,sid, , 〉〉 (where M = • corresponds to the black circle used
in ORM on objects to denote mandatory roles). These then map into the HDM using
the following production rule:
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Fig. 6. An ORM schema of the student-course database

fact type 〈〈FT,N1, R1,M1, . . . , Nn, Rn,Mn〉〉; 〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉
M1 = • ⇒ generate card(R1, 〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉, 1, ∗)

...
Mn = • ⇒ generate card(Rn, 〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉, 1, ∗)
The names of fact types and roles are encoded into a single HDM edge label in a

similar manner to that used to encode UML association and role names into a single
HDM edge label. Note that all fact types have an implied uniqueness constraint across
all n roles, and HDM has a similar edge constraint because the extent of an edge is a
set of tuples. In ORM one can specify uniqueness constraints across n− 1 roles of an n
role fact type. Hence we define the scheme of uniqueness to take both a fact type and
the role Rx that is uniquely identified by the other roles:



uniqueness 〈〈〈〈FT,N1, R1,M1, . . . , Nn, Rn,Mn〉〉, Rx〉〉; ⊥
true ⇒ generate card(〈R1, . . . , Rx−1, Rx+1, . . . , Rn〉,

〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉, 0, 1 )
The production rule implements the cardinality constraint using generate card()

being called with all roles of the fact type accept the Rx being uniquely identified.
We note in passing that ORM also has a general frequency constraint type across

any number of roles. We have not needed this in our examples, but could have modelled
the mandatory and unique constraints using the more general frequency constraint; but
as there are implicit unique and mandatory constraints in an ORM schema and these
constraints are used heavily in the rules regarding a schema’s well formedness, it is
useful to model mandatory and unique as we have here.

ORM can express subtype relationships between fact roles as well as entity types.
We only use subtyping between entity types in our examples, hence we shall restrict
ourselves to just defining that below, together with the notion of disjointness and totality
of such subtypes which ORM also supports:
subset 〈〈EV,EVs〉〉; ⊥

true ⇒ 〈〈EVs〉〉 ⊆ 〈〈EV 〉〉

disjoint 〈〈EV1〉〉, 〈〈EV2〉〉; ⊥
true ⇒ 〈〈EV1〉〉 6∩ 〈〈EV2〉〉

total 〈〈EV,EV1〉〉, 〈〈EV,EV2〉〉; ⊥
true ⇒ 〈〈EV 〉〉 = 〈〈EV1〉〉 ∪ 〈〈EV2〉〉
Our simple UoD does not use the above ORM constructs, but applying the above

definitions to the ORM diagram in Figure 6(a) produces the HDM in Figure 6(b), al-
most the same HDM we arrived at using the ER schema bar some trivial renaming of
nodes and edges. Note that we have assumed that the value classes implied by the pri-
mary reference modes for each entity class have been made explicit before applying the
definitions (ORM allows these to be implicit, and not stated in the ORM schema).

3 Inter Model Transformations

We now introduce five general purpose equivalence mappings that may be used on our
HDM constraint operators, and which allow us to transform between different mod-
elling languages. In particular, the relational HDM schema in Figure 4(b) may be trans-
formed into the ER HDM schema in Figure 3(b) by applying a sequence of transforma-
tions using four of the equivalence relationships.

Section 3.6 describes the fifth general purpose equivalence preserving rule, and
shows how it is used as part of the transformation of the UML HDM schema in Fig-
ure 5(b) to the ER HDM schema. However, the UML to ER transformation as a whole
will be demonstrated to be non-equivalence preserving.

In order to give our mappings a rigorous basis, we define them using the BAV trans-
formation language [39, 28, 30, 31] which allows the specification of bidirectional map-
pings between equivalent data sources, and also the specification of the situation where
one data source has greater information capacity than another. Hence, we first review
BAV primitive transformations for the HDM in the next subsection, before giving the
five mappings in Sections 3.2–3.6 defined using those transformation primitives. Finally



we discuss in Section 3.7 how non-equivalent data sources are identified and handled
in our approach.

3.1 HDM BAV Transformations

primitive transformation reverse transformation conditions information
S → S′ S′ → S onS, S′ capacity
addNode(n,q) deleteNode(n,q) n 6∈ Nodes, n ∈ Nodes′ S ≡ S′

addEdge(e,q) deleteEdge(e,q) e 6∈ Edges, e ∈ Edges′ S ≡ S′

addCons(c) deleteCons(c) c 6∈ Cons, c ∈ Cons′ S ≡ S′

renameNode(n,n′) renameNode(n′,n) n ∈ Nodes, n 6∈ Nodes′, S ≡ S′

n′ 6∈ Nodes, n′ ∈ Nodes′

renameEdge(e,e′) renameEdge(e′,e) e ∈ Edges, e 6∈ Edges′, S ≡ S′

e′ 6∈ Edges, e′ ∈ Edges′

extendNode(n,ql,qu) contractNode(n,ql,qu) n 6∈ Nodes, n ∈ Nodes′ S ⊂ S′

extendEdge(e,ql,qu) contractEdge(e,ql,qu) e 6∈ Edges, e ∈ Edges′ S ⊂ S′

extendCons(c) contractCons(c) c 6∈ Cons, c ∈ Cons′ S ⊃ S′

Table 2. BAV primitive transformations applied to HDM schema S = 〈Nodes, Edges, Cons〉,
to generate a new schema S′

= 〈Nodes′, Edges′, Cons′〉

In the BAV approach, schemas are incrementally transformed by applying to them a
pathway of primitive schema transformations t1, . . . , tr. Each primitive transformation
ti makes a ‘delta’ change to the schema by adding, deleting or renaming just one HDM
node, edge or constraint. The model management [5] concept of a Mapping between
S1, S2 is implemented by having a well-formed pathway [47] between the two schemas.
Note that the model management concept of Compose is directly supported by the BAV
approach, since it allows a pathway between S2, S3 to be appended to the pathway
between S1, S2 to give a pathway between S1, S3. Details of how pathways can be
analyzed for their impact on information capacity can be found in [27], and work in
using BAV to perform the model management Match is found in [40] and Merge is
found in [41].

Table 2 lists those primitive transformations of the BAV language that we use in this
paper, and we now briefly review their semantics.

The primitive transformation that adds a node n to a schema S in order to generate
new schema S′ is addNode(n, q), where q is a query over S specifying the extent of n
in terms of the existing constructs of S. The logical semantics of this kind of transfor-
mation are

∀I.ExtS,I(n) = q (1)

and for this reason we categorise addNode as an exact transformation [25], and the
two schemas S, S′ have equivalent information capacity, summarised in Table 2 by
putting S ≡ S′ in the information capacity column.

When it is not possible to specify the exact extent of the new node n in terms of the
existing schema constructs, we must instead of addNode use extendNode(n, ql, qu),



where ql gives the lower bound on the extent of n, and qu gives the upper bound. The
logical semantics of this kind of transformation are

∀I.qu ⊇ ExtS,I(n) ⊇ ql (2)

and so we term extend a sound transformation [25] when considering ql and a com-
plete transformation [25] when considering qu. The query ql may just be the constant
Void, indicating no values in the extent can be derived from other constructs in the
schema. The query qu may just be the constant Any, indicating that no limit of the val-
ues in the extent can be derived from other constructs in the schema. If ql = Void and
qu = Any then the two queries may be omitted (and only this form of the transforma-
tion is used in the paper). Note that S has an information capacity which is a subset of
that of S′, which in Table 2 by putting S ⊂ S ′ in the information capacity column.

The exact transformation deleteNode(c, q) when applied to schema S ′ generates
a new schema S with node n removed. The extent of n may be recovered using the
query q on S, and Equation 1 above holds. Note that this implies that from a primitive
transformation deleteNode(n,q) used to transform S ′ → S we can automatically derive
that addNode(n,q) transforms S → S ′, and vice versa.

When it is not possible to specify the exact extent of node n being deleted from S ′ in
terms of the remaining schema constructs, contractNode(n,ql,qu) must be used instead
of deleteNode, where Equation 2 above holds. Again, it is possible that sound query
ql may just be Void, and the complete query qu be Any, indicating that the extent of n
cannot be specified even partially, in which case the queries can be omitted from the
transformation. Note that from a primitive transformation contractNode(n,ql,qu) used
to transform S′ → S we can automatically derive that extendNode(n,ql,qu) transforms
S → S′, and vice versa.

The last type of transformation dealing with nodes is renameNode(n, n′) causes a
node n in a schema S to be renamed to n′ in a new schema S′, where in logical terms

∀I.ExtS,I(n) = ExtS,I(n
′) (3)

Note that this definition implies that from renameNode(n, n′) used to transform
S → S′ we can automatically derive that renameNode(n′, n) transforms S′ → S, and
vice versa.

Entirely analogous arguments will give the definitions of the primitive transfor-
mations in Table 2 that handle manipulation of edges. For constraints, there are three
differences. Firstly, since constraints have no extent, there is no query in the primitive
transformations handling constraints. Secondly, constraints have no name, and hence
there is no renameCons transformation. Thirdly, the extendCons transformation causes
S′ to be more restrictive than S, and hence the information capacity of S ′ is less than
that of S.

Note that the ORM HDM schema in Figure 6(b) is the same as the ER HDM schema
in Figure 3(b), except for trivial renaming of constructs. Hence we can apply equiva-
lence preserving rename transformations to make the ORM HDM schema match those
in the ER HDM schema:
renameEdge(〈〈result:has:exam,student,course〉〉, 〈〈result,student,course〉〉)



Hence the pathway of transformations describing the transformation from ER to re-
lational schemas in the following sub-sections also defines the mapping from relational
to ORM schemas, with this extra transformation step appended to the pathway.

We now move on to describe in the subsequent subsections the five mappings that
we propose as a solution to transforming between the four models detailed in the previ-
ous section.

3.2 Inclusion Merge

A⊇B

Cn

...

C1

E

¤

≡ B

Cn

...

C1

E

Fig. 7. Equivalence Relationships: Inclusion Merge

The Inclusion Merge equivalence in Figure 7 allows us to merge two nodes 〈〈A〉〉
and 〈〈B〉〉 together where 〈〈A〉〉 is a subset of 〈〈B〉〉 and there is a mandatory constraint
from 〈〈A〉〉 to an edge e = 〈〈E,A,C1, . . . , Cn〉〉. The mandatory constraint is dropped
as we merge 〈〈A〉〉 and 〈〈B〉〉. Any edges or constraints that applied to 〈〈B〉〉 remain, and
any other (unillustrated) edges on 〈〈A〉〉 are also redirected to 〈〈B〉〉. Definition 9 gives
a pseudo code definition of this equivalence, that generates primitive transformations
on the HDM. The pseudo code first deletes the constraint between 〈〈A〉〉 and 〈〈B〉〉, and
then checks that the subset node 〈〈A〉〉 is not associated in any other subset, union or
exclusion with any other nodes, and raises an exception if that is the case. The pseudo
code then iterates over all edges that connect to node 〈〈A〉〉 and removes any mandatory
constraints involving 〈〈A〉〉. Then move dependents function (defined in Definition 10)
is used to move all edges on 〈〈A〉〉 to connect to 〈〈B〉〉. Note that this will include e and
cause a new edge e′ = 〈〈E,B,C1, . . . , Cn〉〉 to now exist. The final line of Definition 9
then deletes 〈〈A〉〉, giving a query that can restore the values of 〈〈A〉〉 from the new
non-mandatory edge e′.

Definition 9 Inclusion Merge

inclusion merge(〈〈B〉〉,〈〈E,A,C1, . . . , Cn〉〉)
deleteCons(〈〈A〉〉 ⊆ 〈〈B〉〉);
if op(〈〈A〉〉, d) ∈ Cons ∧ op ∈ {⊆, 6∩,∪} then

exception
endif;
foreach e ∈ Edges forwhich e = 〈〈Ea, A, . . . 〉〉

deleteCons(〈〈A〉〉¤ e)
endforeach;



move dependents(〈〈A〉〉,〈〈B〉〉,id 〈〈A〉〉);
deleteNode(〈〈A〉〉,{〈x〉 | 〈x, y1, . . . , yn〉 ∈ 〈〈E,B,C1, . . . , Cn〉〉}); 2

The last line of inclusion merge projects out the single arity tuples 〈x〉 that form the
extension of 〈〈A〉〉 from edge 〈〈E,B,C1, . . . , Cn〉〉.

The definition of move dependents takes three arguments, the first two (a, b) of
which must be a node or edge, and the third a mapping set that maps instances of a
to instances of b. For use in inclusion merge, the third argument should be an identity
function id, defined as id(〈〈A〉〉) = {〈a, a〉 | a ∈ 〈〈A〉〉}.

Definition 10 Move Dependents
move dependents(a,b,map)

foreach op(a, d) ∈ Cons forwhich b 6= d
addCons(op(b, d));
deleteCons(op(a, d))

endforeach;
foreach op(d, a) ∈ Cons forwhich b 6= d

addCons(op(d, b));
deleteCons(op(d, a))

endforeach;
foreach e ∈ Edges forwhich e = 〈〈E, a,C1, . . . , Cn〉〉

let e′=〈〈E, b, C1, . . . , Cn〉〉;
addEdge(e′,{〈y, z1, . . . , zn〉 | 〈x, z1, . . . , zn〉 ∈ e ∧ 〈x, y〉 ∈ map});
move dependents(e,e′,

{〈〈x, z1, . . . , zn〉, 〈y, z1, . . . , zn〉〉 | 〈x, y〉 ∈ map ∧ 〈x, z1, . . . , zn〉 ∈ e});
deleteEdge(e,{〈x, z1, . . . , zn〉 | 〈y, z1, . . . , zn〉 ∈ e′ ∧ 〈x, y〉 ∈ map})

endforeach; 2

In Example 3, the series of transformations that will convert the HDM schema in
Figure 4(b) into that in Figure 3(b) are listed. The first two steps in the series are ap-
plications of inclusion merge, which after 2 result in the intermediate HDM schema
shown in Figure 8.

Example 3 Transforming between relational and ER HDM schemas
1 inclusion merge(〈〈student:name〉〉, 〈〈 ,result:name,result〉〉)
2 inclusion merge(〈〈course:code〉〉, 〈〈 ,result:code,result〉〉)
3 identity node merge(〈〈 ,ug:name,ug〉〉)
4 unique mandatory redirection(〈〈 ,student:name,result〉〉,

〈〈 ,student:name,student〉〉)
5 unique mandatory redirection(〈〈 ,course:code,result〉〉, 〈〈 ,course:code,course〉〉)
6 identity edge merge(〈〈 ,result,student〉〉, 〈〈 ,result,course〉〉)
7 move dependents(〈〈student:name〉〉, 〈〈student〉〉, 〈〈 ,student:name,student〉〉)

2

Taking transformation step 1 and applying Definition 9, we may expand the steps
into a series of primitive transformation steps shown in Example 4. Step 1.1 is a re-
sult of the first foreach loop in Definition 9, Steps 1.2 and 1.3 result from the call to
move dependents, and 1.4 and 1.5 result from the last two lines of Definition 9.



Example 4 Primitive steps associated with transformation 1

1.1 deleteCons(〈〈result:name〉〉¤ 〈〈 ,result:name,result〉〉)
1.2 addEdge(〈〈 ,student:name,result〉〉,

{〈b, c〉 | 〈a, c〉 ∈ 〈〈 ,result:name,result〉〉 ∧ 〈a, b〉 ∈ id〈〈result:name〉〉}
1.3 deleteEdge(〈〈 ,result:name,result〉〉,

{〈a, c〉 | 〈b, c〉 ∈ 〈〈 ,student:name,result〉〉 ∧ 〈a, b〉 ∈ id〈〈result:name〉〉}
1.4 deleteCons(〈〈result:name〉〉 ⊆ 〈〈student:name〉〉)
1.5 deleteNode(〈〈result:name〉〉,

{〈b〉 | 〈b, c〉 ∈ 〈〈 ,student:name,result〉〉}
2

The expansion of transformations 1 illustrates that inclusion merge is a data pre-
serving transformation, since it only uses add and delete BAV transformations. In par-
ticular the edge 〈〈 ,result,student:name〉〉 may be recovered by the query in 1.3 (which
in turn uses the query of 1.5 to find the extent of 〈〈result:name〉〉), and the new edge
〈〈 ,result,student:name〉〉 may be derived from existing data in 1.2 . Note that a very
similar expansion into primitive steps may be performed for 2 , with a similar argu-
ment about data preservation.
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Fig. 8. Intermediate HDM schema in relational to ER conversion, after steps 1 and 2

3.3 Identity Node Merge

The Identity Node Merge in Figure 9 allows us to merge the two nodes 〈〈A〉〉 and
〈〈B〉〉 together because they are identical. The constraints 〈〈A〉〉

id
→ 〈〈E,A,B〉〉, 〈〈A〉〉 ¤
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Fig. 9. Equivalence Relationships: Identity Node Merge

〈〈E,A,B〉〉, and 〈〈A〉〉¢ 〈〈E,A,B〉〉 taken together mean that every instance of the edge
〈〈E,A,B〉〉 is an identity mapping for 〈〈A〉〉, and there is exactly one such mapping in
〈〈E,A,B〉〉 for every element of 〈〈A〉〉. As each element in 〈〈E,A,B〉〉 is an identity
mapping, each element in 〈〈A〉〉 must be in 〈〈B〉〉. Conversely because we also have
〈〈B〉〉 ¤ 〈〈E,A,B〉〉, each element in 〈〈B〉〉 must be in 〈〈A〉〉, and so 〈〈A〉〉 = 〈〈B〉〉. This
implies both 〈〈B〉〉

id
→ 〈〈E,A,B〉〉 and 〈〈B〉〉 ¢ 〈〈E,A,B〉〉, and thus the equivalences

illustrated in Figure 2(a) hold. Because we have identified them as equal, nodes 〈〈A〉〉
and 〈〈B〉〉 can be merged together and the edge 〈〈E,A,B〉〉 dropped, using Definition 11.
Note any node can have this transformation applied in reverse, copying instances into a
new node and linking the old node to the new node via an edge containing the identity
instances.

Definition 11 Identity Node Merge

identity node merge(〈〈E,A,B〉〉)
let e=〈〈E,A,B〉〉;
move dependents(〈〈A〉〉,〈〈B〉〉,e);
foreach c ∈ Cons forwhich contains(e,c)

deleteCons(c);
endforeach;
deleteEdge(e,{〈x, x〉 | 〈x〉 ∈ 〈〈B〉〉});
deleteNode(〈〈A〉〉,〈〈B〉〉); 2

This identity mapping comes about by the way some modelling languages specify
a certain attribute as being an entity’s identifying attribute (such as the primary key
constraint in the relational schema).

In Figure 8 we can use identity node merge to merge nodes 〈〈ug:name〉〉 and 〈〈ug〉〉
by step 3 in Example 3. Note that the constraint 〈〈ug:name〉〉 ⊆ 〈〈student:name〉〉 is not
lost, but becomes 〈〈ug〉〉 ⊆ 〈〈student:name〉〉. Figure 11 is partially derived by applying
this merge.

3.4 Unique-Mandatory Redirection

The Unique-Mandatory Redirection equivalence in Figure 10 allows us to move an
edge 〈〈E,A,C1, . . . , Cn〉〉 from node 〈〈A〉〉 to node 〈〈B〉〉 because both 〈〈A〉〉 and 〈〈B〉〉
have a unique and mandatory constraint on the common edge 〈〈EAB , A,B〉〉. These
constraints together are equivalent to stating that there is a one to one correspondence
between the elements of 〈〈A〉〉 and 〈〈B〉〉 so whatever is related to an element of 〈〈A〉〉
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Fig. 10. Equivalence Relationships: Unique-Mandatory Redirection

through 〈〈E,A,C1, . . . , Cn〉〉 is equally related to the corresponding element in 〈〈B〉〉.
Moving the edge requires us to rewrite the elements of the edge, replacing in each the
value that came from 〈〈A〉〉 with the corresponding value from 〈〈B〉〉 (via 〈〈EAB , A,B〉〉).

Definition 12 Unique-Mandatory Redirection

unique mandatory redirection(〈〈E,A,C1, . . . , Cn〉〉,〈〈EAB , A,B〉〉)
let e = 〈〈E,A,C1, . . . , Cn〉〉;
let map = 〈〈EAB , A,B〉〉;

if (A
id
→ e) ∈ Cons then exception endif;

let e′ = 〈〈E,B,C1, . . . , Cn〉〉;
addEdge(e′,{〈y, z1, . . . , zn〉 | 〈x, z1, . . . , zn〉 ∈ e ∧ 〈x, y〉 ∈ map});
move dependents(e,e′,map)
deleteEdge(e,{〈x, z1, . . . , zn〉 | 〈y, z1, . . . , zn〉 ∈ e′ ∧ 〈x, y〉 ∈ map});

2

For the HDM schema in Figure 8, we can apply 4 in Example 3 to move the
edge 〈〈 ,result,student:name〉〉 from node 〈〈student:name〉〉 to node 〈〈student〉〉, becom-
ing edge 〈〈 ,result,student〉〉. This transformation does not lose information, because of
the constraints on the edge 〈〈 ,student:name,student〉〉, in particular 〈〈student:name〉〉¢
〈〈 ,student,student:name〉〉 is implied by the other constraints present on the edge, as il-
lustrated in Figure 2(a). Similarly we can apply 5 to move edge 〈〈 ,result,course:text〉〉
to become 〈〈 ,result,course〉〉. Applying these two edge redirections in addition to the
previous identity node merge results in Figure 11.

3.5 Identity Edge Merge

The Identity Edge Merge in Figure 12 allows us to replace the node 〈〈A〉〉 and edges
〈〈E1, A,B1〉〉 . . . 〈〈Em, A,Bm〉〉 with the single edge 〈〈A,B1 . . . Bm〉〉. The constraints

id
→, ¤, and ¢ between 〈〈A〉〉 and the natural join of 〈〈E1, A,B1〉〉 . . . 〈〈Em, A,Bm〉〉
mean that for each instance of node 〈〈A〉〉 there is exactly one instance of the join of
edges 〈〈E1, A,B1〉〉 . . . 〈〈Em, A,Bm〉〉. The extent of the hyper edge 〈〈A,B1 . . . Bm〉〉
is obtained from the corresponding values in 〈〈B1〉〉 . . . 〈〈Bm〉〉 for each instance of the
node 〈〈A〉〉. Because of the identity mapping, these are the same values was in 〈〈A〉〉, and
hence there is no information in the node 〈〈A〉〉 that is not in this new edge.
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Fig. 11. Intermediate HDM schema in relational to ER conversion, after steps 1 – 5
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Definition 13 Identity Edge Merge

identity edge merge(〈〈E1, A,B1〉〉, . . . , 〈〈Em, A,Bm〉〉)
let a = 〈〈A,B1, . . . , Bm〉〉;
addEdge(a, {〈b1, . . . , bm〉 |

〈a, b1〉 ∈ 〈〈E1, A,B1〉〉 ∧ . . . ∧ 〈a, bm〉 ∈ 〈〈Em, A,Bm〉〉});
foreach (A op e) ∈ Cons forwhich e ∈ {〈〈E1, A,B1〉〉, . . . , 〈〈Em, A,Bm〉〉}

deleteCons(A op e)
endforeach;
move dependents(〈〈A〉〉,a,id 〈〈A〉〉);
deleteNode(〈〈A〉〉,a) 2

In Figure 11 we can use identity node merge to replace the node 〈〈result〉〉 with
the edge 〈〈result,student,course〉〉, in step 6 of Example 3. In this case the new edge



is binary because the natural join was between two edges. Note that as part of this
process, the edge 〈〈 ,result,result:grade〉〉 from 〈〈result〉〉 to 〈〈result:grade〉〉 becomes
〈〈 ,〈〈result,student,course〉〉,result:grade〉〉.

All that is left for us to do in order to obtain the HDM ER schema is to move
the constraint 〈〈ug〉〉 ⊆ 〈〈student:name〉〉 to 〈〈ug〉〉 ⊆ 〈〈student〉〉. This is correct to do for
similar reasons to the unique-mandatory redirection being correct for edges, but here we
are moving a constraint between two nodes for which, in addition, we know the extent
to be identical. This redirection is achieved by using the move dependents subroutine
in 7 , and the result is Figure 3(b).

3.6 Node Reidentify

Object orientation introduces the concept of there being a unique object identifier
(OID) that is associated to instances of a class, and that OID is not represented as an
attribute. Thus when we look at the HDM representation of the UML shown in Figure 5,
although similar to those for the relational, ER and ORM schemas, there is no use of
the id

→ constraint made between nodes representing the UML class, such as 〈〈student〉〉,
and edges to nodes representing UML attributes, such as 〈〈 ,student,student:name〉〉.
This is because 〈〈student〉〉 has as its extent the object identifiers of the student UML
class, whilst 〈〈student:name〉〉 has as its extent the names of students.

Definition 14 Node Reidentify

node reidentify(〈〈A〉〉,map)
addNode(〈〈A′〉〉,{〈b〉 | 〈a〉 ∈ 〈〈A〉〉 ∧ 〈a, b〉 ∈ map});
foreach (〈〈As〉〉 ⊆ 〈〈A〉〉) ∈ Cons

node reidentify(〈〈As〉〉,map)
endforeach
move dependents(〈〈A〉〉,〈〈A′〉〉,map);
deleteNode(〈〈A〉〉,{〈a〉 | 〈b〉 ∈ 〈〈A′〉〉 ∧ 〈a, b〉 ∈ map})
renameNode(〈〈A′〉〉,〈〈A〉〉) 2

Example 5 Transforming between UML and ER HDM schemas
8 extendCons(〈〈student:name〉〉¢ 〈〈 ,student,student:name〉〉)

9 inverse identity node merge(〈〈student〉〉, 〈〈student:oid〉〉)

10 deleteCons(〈〈student〉〉
id
→ 〈〈 ,student,student:oid〉〉)

11 node reidentify(〈〈student〉〉, {〈x, y〉 |
〈o, x〉 ∈ 〈〈 ,student,student:oid〉〉 ∧ 〈o, y〉 ∈ 〈〈 ,student,student:name〉〉})

12 addCons(〈〈student〉〉
id
→ 〈〈 ,student,student:name〉〉)

13 extendCons(〈〈course:code〉〉¢ 〈〈 ,course,course:code〉〉)

14 inverse identity node merge(〈〈course〉〉, 〈〈course:oid〉〉)

15 deleteCons(〈〈course〉〉
id
→ 〈〈 ,course,course:oid〉〉)

16 node reidentify(〈〈course〉〉, {〈x, y〉 |
〈o, x〉 ∈ 〈〈 ,course,course:oid〉〉 ∧ 〈o, y〉 ∈ 〈〈 ,course,course:code〉〉})



17 addCons(〈〈course〉〉
id
→ 〈〈 ,course,course:code〉〉)

18 renameEdge(〈〈:has:exam,student,course〉〉, 〈〈result,student,course〉〉)

19 deleteCons(〈〈course〉〉¢ 〈〈 ,course,course:oid〉〉)

20 deleteCons(〈〈course〉〉¤ 〈〈 ,course,course:oid〉〉)

21 deleteCons(〈〈course:oid〉〉¢ 〈〈 ,course,course:oid〉〉)

22 deleteCons(〈〈course:oid〉〉¤ 〈〈 ,course,course:oid〉〉)

23 contractEdge(〈〈 ,course,course:oid〉〉)

24 contractNode(〈〈course:oid〉〉)

25 deleteCons(〈〈student〉〉¢ 〈〈 ,student,student:oid〉〉)

26 deleteCons(〈〈student〉〉¤ 〈〈 ,student,student:oid〉〉)

27 deleteCons(〈〈student:oid〉〉¢ 〈〈 ,student,student:oid〉〉)

28 deleteCons(〈〈student:oid〉〉¤ 〈〈 ,student,student:oid〉〉)

29 contractEdge(〈〈 ,student,student:oid〉〉)

30 contractNode(〈〈student:oid〉〉)
2

When transforming between between an OO model such as UML, and key based
models such as ORM, ER or relational, we must overcome the fundamental difference
in data modelling based on OIDs and natural keys. This will require us finding attributes
or associations of the UML class that can be used to identify instances of the UML class.

Comparing the UML schema in Figure 5 with the ER schema in Figure 3, the
HDM schemas of the two appear similar. One difference is trivial: the edge between
〈〈student〉〉 and 〈〈course〉〉 has a different name in the two schemas. The other difference
is between the use of OIDs and natural keys. The ER HDM schema, using natural keys,
has 〈〈student〉〉

id
→〈〈 ,student,student:name〉〉 and 〈〈course〉〉

id
→〈〈 ,course,course:code〉〉,

whereas the UML HDM, using OIDs, does not have these constraints. Example 5 lists
a sequence of transformations that converts the UML schema into an ‘ER compatible’
HDM schema that has explicit attributes for the OIDs, and uses a natural key to identify
the ER entity instances. The following steps explain the example:

1. Missing from the UML schema is any definition of natural keys for the UML
classes. Hence step 8 introduces a new constraint that indicates that name is a
candidate key for student.

2. The inverse of identity node merge in step 9 generates a new node 〈〈student:oid〉〉,
connected to 〈〈student〉〉 by a new edge 〈〈 ,student,student:oid〉〉. If for example the
node 〈〈student〉〉 had the extent {〈&1〉, 〈&2〉, 〈&3〉, 〈&4〉} before this step, then the
new edge will have as its extent
{〈&1,&1〉, 〈&2,&2〉, 〈&3,&3〉, 〈&4,&4〉}.

3. Transformations 10–12 have the net effect of repopulating the 〈〈student〉〉 node
with values of the 〈〈student:name〉〉 attribute, and changing its key from oid to
name. For example, if in the schema that results from 9 〈〈 ,student,student:name〉〉
had extent

{〈&1, ‘Mary’〉, 〈&2, ‘John’〉, 〈&3, ‘Jane’〉, 〈&4, ‘Fred’〉}
then the map generated would be the same list, and in the schema after 11 , the node
〈〈student〉〉 would have the extent {〈‘Mary’〉, 〈‘John’〉, 〈‘Jane’〉, 〈‘Fred’〉}, and the



edge 〈〈 ,student,student:oid〉〉 would have the extent
{〈‘Mary’,&1〉, 〈‘John’,&2〉, 〈‘Jane’,&3〉, 〈‘Fred’,&4〉}

The result of after 12 is shown in Figure 13.
4. Transformations 13–17 perform a similar conversion of the 〈〈course〉〉 node into a

natural key based construct, using code as the key.
5. Transformation 18 deals with the trivial problem of renaming the edge between

〈〈student〉〉 and 〈〈course〉〉 to match the name in the ER schema.
6. Transformations 19–30 delete the 〈〈student:oid〉〉 and 〈〈course:oid〉〉 nodes (with

their associated constraints and edges). Note that the use of contract transformations
represents the fact that you are unable to derive the oid values from the ER schema.

If the transformations in Example 5 are compared with the BAV transformation
summary Table 2, we see that the UML schema has higher information capacity than the
ER schema, due to its use of OIDs and lack of key constraints. Note that alternatively,
step (6) could be omitted, and the ER schema could be enhanced with oid attributes, if it
was intended to use the ER schema to more fully represent the UML schema. However,
the UML would still lack the key information present in the ER schema.
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Fig. 13. UML to ER mapping after 12

3.7 Non-Equivalent Schemas
The examples in Figures 3–6 were deliberately chosen to illustrate how we could draw
an equivalence between schemas with the same information capacity (with the excep-
tion of the UML object identifiers and the other models use of keys). In practice, mod-
elling languages have different expressive powers, and hence there may be no equivalent
schema.



For example, changing the cardinality constraint in Figure 3(a) of student being
associated with result from 0:N to 1:N would result the addition in Figure 3(b) of a
HDM constraint 〈〈student〉〉 ¤ 〈〈result,student,course〉〉. If we review the arguments
outlined in Sections 3.2–3.5 with this extra constraint in place then we would run
into a problem. The reversed edge redirection from 〈〈 ,result,student〉〉 in Figure 11
to 〈〈 ,result,student:name〉〉 in Figure 8 carries the mandatory constraint introduced by
1:N, giving an HDM constraint 〈〈student:name〉〉¤ 〈〈result,student,course〉〉. When we
come to reverse the inclusion merge that merged 〈〈result:name〉〉 into 〈〈student:name〉〉
to enable the relationship between 〈〈result〉〉 and 〈〈student:name〉〉 to be represented as
a foreign key, we are unable to carry this mandatory constraint down to 〈〈result:name〉〉.
This is because the relational schema in Figure 4(a) cannot be altered to express the
fact that every student.name must be referenced by at least one result.name. This lost
constraint is, therefore, not a weakness in the approach, but an example of the approach
formally identifying what information from the ER schema cannot be represented in
the relational schema. In this particular case, it might appear that we could repair the
relational schema by adding the foreign key constraint student.name → result.name,
but this would not be legal since result.name is not a candidate key of result.

4 Handling Additional Modelling Concepts
Figure 14(a) illustrates an ORM schema of an extended version of the student-course
database where, as we will show, the ORM schema is able to represent some aspect
of the UoD that one or more of our other three data models is unable to represent.
The additions made to the ORM schema of Figure 6 are described in the following
paragraphs under headings which indicate the category of modelling concept they fall
under, and we discuss the extent to which the relational, ER and UML models may
handle these types of concepts.

Candidate Keys The ORM model of Figure 14(a) has reference/predicate between value
〈〈sid〉〉 and entity 〈〈student〉〉 where both roles are key. This implies that we can identify
〈〈student〉〉 by either 〈〈name〉〉 or by 〈〈sid〉〉. This concept can be represented in a rela-
tional schema with the 〈〈student,sid〉〉 attribute being a candidate key. Neither the ER
nor UML models have a method of representing this concept however.

Typically, ER models do not make explicit the relationships between an entity and
its attributes, but instead use some sort of syntax with an attribute’s name to indicate
that it is (or is part of) the primary identifier: no other uniqueness constraints can be
expressed. With the more elaborate ER syntax where attribute/entity cardinality con-
straints are explicit, a one-to-one relationship is synonymous with the primary identifier
and therefore can only be expressed once per entity.

Because of UML’s reliance on object identifiers, it does not require classes to have
value-based reference schemes and indeed requires nonstandard extensions to its nota-
tion to express an attribute’s uniqueness in its association with its class.

Note that in our HDM production rules for UML there is no rule that generates a
uniqueness constraint from an attribute to the edge associating it to its class. In our
HDM production rules for ER the only way to generate this constraint is in conjunction
with a reflexive constraint.
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Fig. 14. An extended student-course database

If we were to convert our extended ORM schema into an HDM schema that could
have been produced by an equivalent ER schema, we would have to drop the unique-
ness constraint from either 〈〈sid〉〉 or 〈〈student〉〉, or extend the ER language to handle
candidate keys. For UML, both uniqueness constraints must be dropped, since it has no
support for any keys (except by using its constraint language).



Disjointness between entities The ORM model of Figure 14(a) has an additional sub-
class entity 〈〈pg〉〉 that is disjoint from 〈〈ug〉〉, and in addition, 〈〈pg〉〉 and 〈〈ug〉〉 are total
w.r.t. entity 〈〈student〉〉.

The disjointness and totality can not be represented in the relational model, since
the relational model has no constructs that make use of either the HDM disjoint or
union constraints. If we wanted to model our extended ORM example using a relational
schema we would have to drop the exclusion constraint between 〈〈ug〉〉 and 〈〈pg〉〉 as
well as the union constraint between these subsets and 〈〈student〉〉.

There are several well known ways we may attempt to model the total partition.

– We could represent each subset with a table containing the columns common to
just that subset, and a primary key that is also a foreign key to the superclass table
〈〈student〉〉. The problem is that there is no way to enforce that at most one instance
of some referring foreign key exists for each instance of a primary key, i.e. that the
subclass tables are disjoint.

– With some more elaborate transformations we could change the subclass identifi-
cation into a column of the superclass telling us which subclass table we should
join each instance to. This would enforce the exclusion constraint, and if we made
the column not nullable it would also enforce the union constraint. The problem
is that the relational model has no way of specifying that a value in a column in
the superclass table means that the superclass table joins with a particular subclass
table.

– With yet more transformations we could use the subclass-identifying column as in
(4) and make each column of each subtype a nullable column of the supertype table
where it is set to null when not applicable, and have no subtype tables. Again, the
relational model has no way of specifying that certain columns must, or must not,
be null depending on the value held in another column.

Therefore, despite there being several ways to model subclasses in the relational
model, we can not fully represent the exclusion and union constraints involving 〈〈ug〉〉
and 〈〈pg〉〉. The UML and ER modelling languages are able to represent these con-
straints.

Cardinality constraints of n-ary relationships The ORM model of Figure 14(a) has a
ternary ORM fact type between entities 〈〈student〉〉, 〈〈course〉〉, and 〈〈position〉〉. This
fact type has two overlapping keys, the first states that any pair of 〈〈student〉〉 and
〈〈course〉〉 instances may appear at most once in the fact, and the second that any pair of
〈〈position〉〉 and 〈〈course〉〉 instances may appear at most once in the fact.

Whilst it is well known that look-across and look-here cardinality constraints have
equivalent expressive power for binary relationships, it is rather less well known that
this equivalence does not extend to n-ary relationships [21]. In particular, the use of
keys on the ORM ternary fact type is not representable in the ER modelling language as
we defined it in Section 2.2, since we choose look-here cardinality constraints. Look-
here constraints are restricted to express the cardinality of just a single entity in the
relationship. The use of HDM unique constraints in Figure 14(b) has no representation
as ER model look-here constraints. Hence the nearest representation of the ternary rela-



tionship we can achieve is shown in Figure 15(a), where all cardinality constraints are
removed (i.e. 0:N is used, meaning that the relationship is unrestricted).

student course
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0:N

0:N
0:N

(a) Look here semantics

student course

position

result
1..1

0..N
1..1

(b) Look across semantics

Fig. 15. Alternative ER ternary-relationship cardinality constraints

The UML model is capable of describing this concept, since it uses look-across car-
dinality constraints. Many ER modelling languages also use look-across semantics, and
hence we could represent the ORM in such languages as shown in Figure 15(b), where
the use of the symbol .. between lower and upper bounds for cardinality constraints
indicates the use of look-across semantics1.

To generalise, for look-here semantics, we have the restriction on the use of HDM
mandatory and unique constraints from Definition 5 to m = 1 (i.e. only one node or
edge is restricted as mandatory or unique), and for look-across semantics the restriction
is that m = n − 1 for an n-ary relationship.

5 Related Work

Graphs and graph transformations are a subject of fundamental interest to computer
science, and therefore have been very widely studied [48], and in particular have been
studied with application to schema transformation between different modelling lan-
guages. What we will now do is set our work in the context of other work (and thus
demonstrate it to be distinctive) by discussing the answer to three general questions
one might ask about work in the area of ‘intermodel transformation’. Note that we ex-
clude from the discussion issues associated with modelling languages that are not set
oriented, and also the typing of data, since these matters are outside the scope of the
work presented in this paper.

What is being modelled, and how is it modelled? The first distinction is between graphs
which model the dynamic behaviour of a computer system (a recent survey may be
found in [3], and general tools to model software have been constructed such as the

1 Whilst this example might indicate that look-across semantics have advantages, there will be
other modelling situations that would be better modelled with look-here constraints. There are
also operational issues to consider, in that look-across constraints on n-ary relationships are
difficult to implement: for example, if mandatory were used in n-ary relationships, then insert-
ing or deleting an instance from one entity will require more than one relationship instance to
be inserted or deleted. However, since we are in this paper only studying the logical aspects of
data models, we will not study this issue further.



PROGRES system [33]), and graphs which model the static (i.e. data) aspect of the
system, in which area our work falls into. There is a degree of overlap between the
two, in that programs must manipulate data to perform useful tasks (for example in the
PROGRES system [34]).

Considering work that is focused on static data modelling via graphs, the next dis-
tinction we can make is between systems that are data model specific, or those which
handle multiple models. This is not a binary distinction, but denotes a spectrum. At one
extreme we find systems that map between schemas in a single modelling language: nor-
mally the relational model such as in the self-documenting data models of [26], or the
initial version of Clio [50]. In the middle of the spectrum, much work has concentrated
on converting between just a few specific modelling languages: for example between
relational and ER [1, 36], ORM to UML or relational [20], relational and generic object
oriented models [11, 23], XML and relational data [37], etc. Our work, along with [18,
2, 10, 7, 44], attempts to provide a more flexible framework, and demonstrate how the
framework is adaptable to a wide range of data modelling languages.

Within approaches that deal with multiple models, there is then the distinction to
make as to how the approaches handle the requirements of multiple data modelling
languages. Invariably, some common data model (CDM) [43] is used as a intermedi-
ate language, into which schemas of all other data modelling languages are translated.
There is then the choice of how expressive with CDM language should be [17]. Some
approaches take a union of all modelling constructs to form a high level CDM which has
all the features of the models being represented (for example, by having constructs for
key, aggregation, function dependency, and so on). DB-MAIN [18, 22, 17] and MDM
[2] are examples of tools that take this approach. Our work, and [10, 7, 44], instead use
a low level CDM, where the CDM has a few simple modelling constructs, plus the
ability to express some constraints over those modelling constructs. Our work differs
from other approaches in having developed a small set of constraint primitives that may
be used instead of general logical expressions. The constraint primitives are relatively
fine grained, which has the advantage that our transformations can deal with just those
aspects of the constraints that are relevant to the particular transformation.

What type of Graph Language is used? The notion of a ‘graph’ is a very general one,
but we will restrict ourselves to saying that we are considering languages that have the
concept of there being nodes, along with some method of defining relationships be-
tween those nodes. From that basis, there have been a wide range of variations of what
semantics are attached to the nodes and relationships. A major distinction is between
graph models that are schema models where data is just the values associated with the
extent of the nodes and relationships. The HDM, and [26, 2, 44, 18, 10, 16, 46] fall into
this category. Alternatively, the graph models may be two-level models, modelling as
nodes and associations between nodes both the schema and the data instances. Exam-
ples of this approach include [7, 23].

Another important feature to distinguish is what relationships are provided in the
graph model. Using the terminology of the HDM, we can distinguish between relation-
ships that model (1) edges (i.e. data that is restricted in extent to values that appear in
the nodes that the edge connects), (2) constraints (i.e. just restrict the values that may



appear in the nodes that the relationship connects) or (3) edge-constraints (i.e. are edges,
with some implied constraints).

Perhaps surprisingly, some graph models have just nodes and constraints. For ex-
ample, MDM has three types of node — abstract, aggregation and lexicals — and six
types of constraints (which they call edges) that represent functional dependency, mul-
tivalued functional dependency, components of aggregation, keys of aggregation, and
keys of abstract. Also, the ULD [7] representation language has nodes representing sets
of tuples called ‘constructs’ which may have first order logic constraints placed on their
extent, and WOL [16] models nodes as classes, with the notion of keys used to identify
class instances, and general purpose constraint language to use over the class instances.

A common type of graph language is to have nodes and binary edges, such as in
Clio, possibly with additional constraints, such as [26, 10]. In [44] the reserved graph
grammar (RGG) is used to represent data models, where an RGG is comprised of two
types of node, and binary edges between these nodes, and some constraint relationships.

A hypergraph model was used in the specific case of relational schema transfor-
mations in [51], and nested hypergraphs have been studied as a general framework for
modelling complex objects [38]. The higher-order ER model (HERM) [46] is similar
to the HDM, in that it is also a nested hypergraph model: it allows for n-ary relation-
ships which may connect to entities or other relationships. However, the HERM still
distinguishes between attributes and entities, and it uses relatively course grained con-
straints. In particular, cardinality constraints are not decomposed into two primitives as
they are in this paper, nor is there the equivalent of our reflexive constraint. Although
there is some discussion in [46] about mapping HERM to relational and network mod-
els, we are not aware of other work that uses nested hypergraphs as a general basis
for mapping between schemas in different modelling languages. An advantage of the
HDM over other approaches is that it clearly separates those constructs that have an
extent (nodes and edges) from those which restrict the extent of other constructs (con-
straints). Another advantage of the use of a hypergraph based model is that it has a
natural mapping to all higher level modelling languages we have studied to date.

How are the transformations specified? The notion of transforming schemas is widely
studied, and surveys of database transformations can be found in [4, 15]. A distinction
that can be drawn between most previous work and ours is the level of granularity at
which the transformations between schemas are presented. Most work [18, 26, 44, 16]
takes a coarse grain approach, where a transformation will specify a semantic mapping
between equivalent structures in the high level modelling language, such as the map-
ping between a many-many relationship in one schema to an entity with two one-many
relationships. In our approach and in [10, 6], the aim is to specify transformations at a
fine grain level. Our approach differs in that our transformations are schema oriented,
in the sense that we incrementally add, delete or rename single constructs in the HDM,
rather than be query oriented as in [10, 6] where they specify the query that is used to
map sets of constructs in one model to sets of constructs in another. The use of BAV
transformations has the advantage that it establishes a bidirectional mapping between
schemas.
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In this paper we have extended the hypergraph data model (HDM) [39]. The
HDM differs from normal graphs in that edges may connect together any number of
nodes or edges rather than just two nodes. HDM nodes and edges have an extent, with
the extent of an edge being constrained to take values that must appear in the extent of
the nodes or other edges it connects.

The HDM in [39] allows arbitrary constraints. Our extension in this paper is to de-
fine six fundamental constraints that we believe cover the majority of features in the
popular high level data modelling languages. We have used these to precisely define
mappings between the HDM schema and a representative set of features from the rela-
tional, ER, ORM and UML-class data models.

We have taken an example UoD, and given schemas for that UoD in four high level
data models named above. Then using our mappings we have derived an equivalent
HDM representation for each. The similarity of each HDM graph with its high level
data model’s counterpart illustrates the fact that many of the semantics of these high
level data models implied by their graphical structures are similar across the spectrum
of data models, and this commonality is captured by the graphical structure of HDM.
Although each HDM schema was shown to be equivalent (with the exception of some
aspects of the UML model) in the sense that each has the same information capacity,
they were syntactically different.

We reviewed the set of primitive reversible transformations on HDM graphs that
we have used extensively elsewhere in our schema integration and evolution work [27,
39, 29, 30]. We then gave five equivalence preserving graph transformations predicated
on using only our six fundamental constraints, and defined in terms of these primitive
HDM transformations.

We then showed how the three equivalent HDM graphs from the ER, relational and
ORM schemas can be converted into each other through a sequence of these equiva-
lence preserving transformations. The mappings from the high level data models to their
HDM representations, along with the equivalence transformations between them show
that these three schemas are equivalent, by virtue of the fact that only add, delete and
rename transformations were required to implement the mapping. As the equivalence
transformations are built from HDM’s reversible primitive transformations, queries can
be rewritten from one schema to another. In principle, we could therefore migrate data
from an instance of a schema in one data modelling language to an instance of an equiv-
alent schema in a different data modelling language.

We also discussed how our approach identifies when two HDM schemas are not
equivalent by virtue of any ‘left over’ constraints from one schema when we try to
convert it into the other schema (after transformations are applied, there are some con-
straints in one schema that do not appear in the other). This was used to show exactly



how the UML schema from the example UoD differs from the other three schemas.
We also outlined how our approach might be used to demonstrate that some features
of a high level data modelling language may not be representable in another. Note this
does not prove that the two schemas are not equivalent: to realise this goal we would
need to prove that our equivalence transformations are adequate to convert between any
two equivalent HDM schemas, and also prove that every feature of the data models in
question are mapped into an equivalent set of HDM model constructs.

Our future work will expand our approach to take account of type information in a
data source, and also to model list and bag based data models, such as XML (which has
list based semantics) and SQL (i.e. the relational model with bag semantics). We will
also investigate heuristic search techniques to determine automatically which equiva-
lence preserving transformations are required to map a schema in one modelling lan-
guage into a schema in another modelling language.
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