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Abstract. In this paper we study the existence of a small set T of span-
ning trees that collectively “1-span” an interval graph G. In particular,
for any pair of vertices u, v we require a tree T ∈ T such that the dis-
tance between u and v in T is at most one more than their distance in
G. We show that:

– there is no constant size set of collective tree 1-spanners for interval
graphs (even unit interval graphs),

– interval graph G has a set of collective tree 1-spanners of size
O(log D), where D is the diameter of G,

– interval graphs have a 1-spanner with fewer than 2n − 2 edges.

Furthermore, at the end of the paper we state other results on collec-
tive tree c-spanners for c > 1 and other more general graph classes.

1 Introduction

A spanning subgraph H of G is called a spanner of G if H provides a “good”
approximation of the distances in G. More formally, for c ≥ 1, H is called an
additive c-spanner of G if for any pair of vertices u and v their distance in H
is at most c plus their distance in G [10]. (A similar definition can be given for
multiplicative c-spanners [1,14,13]; however since we are only concerned with
additive spanners, we will often omit “additive”.) In this paper, we continue
the approach taken in [5,4,7] of studying collective tree spanners. We say that a
graph G(V, E) admits a system of µ collective additive tree c-spanners if there is
a system T (G) of at most µ spanning trees of G such that for any two vertices
u, v of G a spanning tree T ∈ T (G) exists such that the distance in T between x
and v is at most c plus their distance in G. We say that system T (G) collectively
c-spans the graph G. Clearly, if G admits a system of µ collective additive tree
c-spanners, then G admits an additive c-spanner with at most µ× (n− 1) edges
(take the union of all those trees), and if µ = 1 then G admits an additive tree
c-spanner. Note also that any graph on n vertices admits a system of at most
n − 1 collective additive tree 0-spanners (take n − 1 Breadth-First-Search–trees
(also known as shortest path trees) rooted at different vertices of G).
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One of the motivations to introduce this new concept steams from the prob-
lem of designing compact and efficient routing schemes in graphs. In [6,15], a
shortest path routing labeling scheme for trees is described that assigns each
vertex of an n-vertex tree a O(log2 n/ log log n)-bit label. Given the label of a
source vertex and the label of a destination, it is possible to compute in constant
time, based solely on these two labels, the neighbor of the source that heads in
the direction of the destination. Clearly, if an n-vertex graph G admits a system
of µ collective additive tree r-spanners, then G admits a routing labeling scheme
of deviation (i.e., additive stretch) r with addresses and routing tables of size
O(µ log2 n/ log log n) bits per vertex. Once computed by the sender in µ time
(by choosing for a given destination an appropriate tree from the collection to
perform routing), headers of messages never change, and the routing decision is
made in constant time per vertex (for details see [4,5]).

Previously, collective tree spanners of particular classes of graphs were con-
sidered in [4,5,7]. Paper [5] showed that any chordal graph, chordal bipartite
graph or cocomparability graph admits a system of at most log2 n collective
additive tree 2–spanners. These results were complemented by lower bounds,
which say that any system of collective additive tree 1–spanners must have
Ω(

√
n) spanning trees for some chordal graphs and Ω(n) spanning trees for

some chordal bipartite graphs and some cocomparability graphs. Furthermore,
it was shown that any k-chordal graph admits a system of at most log2 n collec-
tive additive tree (2�k/2�)–spanners and any circular-arc graph admits a system
of two collective additive tree 2–spanners. Paper [4] showed that any AT-free
graph (graph without asteroidal triples) admits a system of two collective ad-
ditive tree 2-spanners, any graph having a dominating shortest path admits a
system of two collective additive tree 3-spanners and a system of five collective
additive tree 2-spanners, and any graph with asteroidal number an(G) admits a
system of an(G)(an(G) − 1)/2 collective additive tree 4-spanners and a system
of an(G)(an(G)− 1) collective additive tree 3-spanners. Collective multiplicative
tree spanners of planar graphs were investigated in [7]. It was shown that any
weighted n–vertex planar graph admits a system of O(

√
n) collective multiplica-

tive tree 1-spanners (equivalently, additive tree 0-spanners) and a system of at
most 2 log3/2 n collective multiplicative tree 3–spanners.

In this paper we study collective tree 1-spanners for interval graphs. In Sec-
tion 2, we show that no constant number of trees can collectively 1-span interval
graphs (even unit interval graphs). Surprisingly there is, as shown in Section 4,
an additive 1-spanner that uses fewer than 2n − 2 edges, the number of edges
required for two disjoint spanning trees. In Section 3, we present a polynomial
time algorithm to find a set of O(log D) trees that collectively 1-span a given
interval graph G, where D is the diameter of G. In the final section we briefly
list other results on families of graphs that strictly contain interval graphs. First
we present the definitions used in this paper.

Notation and Definitions: All graphs occurring in this paper are connected,
finite, undirected, loopless and without multiple edges. In a graph G(V, E) (n =
|V |, m = |E|) the length of a path from a vertex v to a vertex u is the number
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(a) (b)

Fig. 1. (a) A house, (b) A domino

of edges in the path. The distance dG(u, v) between the vertices u and v is the
length of a shortest path connecting u and v. The eccentricity ecc(v) of a vertex
v of G is maxu∈V dG(u, v). The diameter diam(G) of G is maxv∈V ecc(v). The
ith neighborhood of a vertex v of G is the set Ni(v) = {u ∈ V : dG(v, u) = i}.
For a vertex v of G, the sets N(v) = N1(v) and N [v] = N(v) ∪ {v} are called
the open neighborhood and the closed neighborhood of v, respectively. For a set
S ⊆ V , by N [S] =

⋃
v∈S N [v] we denote the closed neighborhood of S and by

N(S) = N [S]\S the open neighborhood of S. A set D ⊆ V is called a dominating
set of a graph G = (V, E) if N [D] = V .

An independent set of three vertices such that each pair is joined by a path
that avoids the neighborhood of the third is called an asteroidal triple (AT).
A graph G is an AT-free graph if it does not contain any asteroidal triples [2].
A graph is chordal if it does not contain any induced cycles of length greater
than 3. A graph is an interval graph if one can associate with each vertex an
interval on the real line such that two vertices are adjacent if and only if the
corresponding intervals have a nonempty intersection. Furthermore, an interval
graph is a unit interval graph if all intervals are of the same length. Unit interval
graphs are equivalent to proper interval graphs where no interval can properly
contain any other interval. It is well known that a graph is an interval graph if
and only if it is both a chordal graph and an AT-free graph [9].

A graph is weakly chordal (also called weakly triangulated) if neither G nor
its complement G contain an induced hole (cycle of size at least 5). A graph G is
house-hole-domino-free (HHD-free) if it does not contain the house, the domino,
and holes as induced subgraphs (see Fig. 1). Clearly, chordal graphs are strictly
contained in both weakly chordal and HHD-free graphs.

2 Lower Bound

Independently McKee [12] and Kratsch et al. [8] showed that no single tree can
c-span a chordal graph for any constant c. We now show a similar result for
collectively 1-spanning a unit interval graph.

Theorem 1. No constant number of trees can collectively 1-span a unit interval
graph.
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Proof. First we will show that two trees do not suffice and then show how to
extend this result to any constant number of trees.

The general “gadget” will be a K3 with two independent universal vertices
x and y (i.e. we have a K5 with the edge xy missing). The vertices of the K3

will be labelled 1, 2, 3. Now make a sufficiently long chain of these gadgets by
identifying the y vertex of a gadget with the x vertex of its right neighbor. It is
straightforward to confirm that this graph G is a unit interval graph. Consider
two trees T1 and T2 that supposedly collectively 1-span G. By making the chain
sufficiently long, by the “pigeonhole principle”, we are guaranteed that there are
three gadgets in G namely, A, B and C where A is left of B which is left of C
such that:

– T1 restricted to A, B and C is exactly the same spanning tree for all three
gadgets. Exactly the same means from the labelled vertex point of view,

– T2 restricted to A, B and C is also exactly the same spanning tree for all
three gadgets. Note that T1 restricted to {A, B, C} is not necessarily the
same as T2 restricted to {A, B, C}.

The vertices in A, B and C will be denoted Ax, B3, Cy , where, for example,
Ax refers to the x-vertex of A. We say that a tree provides a 1-approximating
path between two vertices if the distance between the vertices in the tree is at
most 1 more than their distance in G. We now show that in order for T1 or T2

to provide such an approximating path, certain edges of G must be present in
the tree.

Claim. Let i be an element of {1, 2, 3}. If either T1 or T2 provides a 1-approxi-
mating path between Ai and Ci, then it must contain the xi and yi edges in all
of A, B and C.

Proof. Without loss of generality, assume that T1 provides the 1-approximating
path between Ai and Ci, i ∈ {1, 2, 3}. Such a path requires either Ai to be
adjacent to Ay and/or Ci to be adjacent to Cx. Without loss of generality,
assume Ci is adjacent to Cx; thus since T1 when restricted to A, B and C is
exactly the same, Ai is adjacent to Ax and Bi is adjacent to Bx as well. We now
show that in all three of A, B and C, i is also adjacent to y. Suppose not; now
in each gadget, the distance between i and y is at least 2 which means that the
tree path between Ai and Ci must be at least 2 greater than the distance in G
(since in T1 the distance between Bx and By must be at least 3 by following the
edge BxBi and the path between Bi and By). �	

From the claim, it is clear that each of T1 and T2 can provide at most one
path between A1, C1 or A2, C2 or A3, C3 and thus at least three trees are required
to 1-approximate G.

To generalize this argument, i.e. to show that at least k trees are required,
merely replace the K3 in the gadget by a Kk. The same use of the claim shows
that k − 1 trees are not enough. �	

A straightforward analysis (that will be presented in the journal version of
the paper) shows that the size of the collective tree 1-spanners is Ω(

√
log n).
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3 Upper Bound

In light of Ω(
√

log n) spanning trees being needed to collectively 1-span an in-
terval graph G, we now show that 2 log2(D−1)+4 spanning trees suffice, where
D is the diameter of G.

Let P be a shortest path of a graph G. If every vertex z of G belongs to
the neighborhood N [P ] of P , then we say that P is a dominating shortest path
(DS-path) of G. It is known that any AT-free graph has a DS-path which can be
found in linear time [2]. In what follows we will need a slightly stronger result
from [8].
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Fig. 2. (a) Graph G = G0,7, (b) graphs G0,4 and G4,7, (c) graphs G0,2, G2,4, G4,6 and
G6,7. Graphs G0,1, G1,2, G2,3, G3,4, G4,5 and G5,6 are not shown.

Lemma 1. [2,8] Any AT-free graph G admits a DS-path (x0, x1, · · · , xecc(x0))
such that for every i = 1, 2, · · · , ecc(x0), every vertex z ∈ Ni(x0) is adjacent to
xi or xi−1. Moreover, such a DS-path can be constructed in linear time.

Now let G be an interval graph and let (x0, x1, · · · , xecc(x0)) be such a DS-
path of G described by Lemma 1. The following lemma is important for our
future discussion.

Lemma 2. For any two adjacent vertices u ∈ Ni(x0) and v ∈ Ni+1(x0), u, v ∈
N [xi] or u, v ∈ N [xi+1]. Moreover, if u 
= xi, then uxi ∈ E.
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Proof. If u = xi or v = xi+1, then the lemma is trivially true. Hence, we may
assume that u 
= xi and v 
= xi+1. If uxi /∈ E then, by Lemma 1, uxi−1 ∈ E. If
now vxi ∈ E, then u, v, xi, xi−1 give an induced cycle of length 4 in G, which
is impossible for an interval graph. If vxi /∈ E then, by Lemma 1, vxi+1 ∈ E.
Then, we obtain either an induced cycle of length 5 or induced cycle of length
4, depending on whether or not uxi+1 is in E. So, if u 
= xi, then uxi must be in
E. If now vxi+1 ∈ E but neither uxi+1 nor vxi is in E, then xi, u, v, xi+1 form
an induced cycle of length 4 in G, which is impossible. �	

Let l denote ecc(x0). For any two integers i, j, 0 ≤ i < j ≤ l, we define Gi,j

to be the subgraph of G induced by vertices {xi} ∪Ni+1(x0)∪ · · · ∪Nj(x0) (see
Fig. 2 for an illustration). In view of Lemma 1, obviously, Gi,j is connected and
G = G0,l. We use the following procedure to construct a system of local shortest
path trees of G.

PROCEDURE 1. A system of local shortest path trees for an interval
graph G.

Input: An interval graph G, a DS-path (x0, · · · , xl) and the layering
{x0}, N1(x0), · · · , Nl(x0) of G.

Output: A system of local shortest path trees of G.

Method:
set k := 0; Gk := {G0,l}; T := ∅;
while Gk 
= ∅ do

set Gk+1 := ∅; T ′
k := ∅; T ′′

k := ∅;
for each Gi,j ∈ Gk do

if j = i + 1 then
construct a shortest path tree of Gi,j rooted at xi and put it in T ′

k ;

construct a shortest path tree of Gi,j rooted at xj and put it in T ′′
k ;

else /* if j > i + 1 */
set s := 
(j − i)/2�+ i + 1;
construct a shortest path tree of Gi,j rooted at xs−1 and put it in T ′

k ;

construct a shortest path tree of Gi,j rooted at xs and put it in T ′′
k ;

set Gk+1 := Gk+1 ∪ {Gi,s−1, Gs−1,j};
set T := T ∪ T ′

k ∪ T ′′
k ;

set k := k + 1;
return T .

Note that the while loop in the procedure above will be executed at most
log2(l−1)+2 times. Let Gi,j be an arbitrary subgraph generated by the procedure
with j > i + 1. Let also s = 
(j − i)/2� + i + 1 and a ∈ Nr(x0), b ∈ Nt(x0) be
two arbitrary vertices in Gi,j , where r ≤ t are two integers between i and j
inclusive. Let Ts, Ts−1 ∈ T be the two shortest path trees of Gi,j rooted at
xs, xs−1, respectively. Clearly, both spanning trees span all the vertices of Gi,j

and the subgraphs Gi,s−1 and Gs−1,j of Gi,j have only one common vertex xs−1.
The following lemmata hold.
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Lemma 3. If r= t=s, then dTs(a, b)≤dG(a, b) + 1 or dTs−1(a, b)≤dG(a, b) + 1.

Proof. Since Ts and Ts−1 are shortest path trees, using Lemma 1, one can easily
show that dTs(a, b) ≤ 3 or dTs−1(a, b) ≤ 3. So, if ab /∈ E or a, b ∈ N [xs] or
a, b ∈ N [xs−1], then the lemma holds. If now ab ∈ E and, without loss of
generality, axs, bxs−1 ∈ E and bxs, axs−1 /∈ E, then the vertices a, b, xs−1, xs

form an induced cycle of length 4 in G, which is impossible. �	
In a similar way one can show the following.

Lemma 4. If a and b are vertices of a graph Gi,i+1 then dT ′(a, b) ≤ dG(a, b)+1
or dT ′′(a, b) ≤ dG(a, b) + 1, where T ′, T ′′ ∈ T are shortest path trees of Gi,i+1

rooted at xi and xi+1, respectively.

Lemma 5. If i ≤ r < s ≤ t ≤ j, then dTs(a, b) ≤ dGi,j (a, b)+ 1 or dTs−1(a, b) ≤
dGi,j (a, b) + 1.

Proof. Using Lemma 1, it is easy to show that dTs(a, b) ≤ t−r+3 or dTs−1(a, b) ≤
t − r + 3. So, when dGi,j (a, b) ≥ t − r + 2, the lemma clearly holds. Therefore,
we may assume that dGi,j (a, b) is t − r + 1 or t − r. Let first dGi,j (a, b) = t − r
and (zr = a, zr+1, · · · , zt = b) be a shortest path between a and b in Gi,j .
Consider vertices zs−1 and zs. According to Lemma 2, they both belong to
N [xs] or to N [xs−1]. Without loss of generality, assume zs, zs−1 ∈ N [xs]. Since
Ts is a shortest path tree, dTs(xs, a) ≤ s − r and dTs(xs, b) ≤ t − s + 1. So,
dTs(a, b) ≤ dTS (xs, a) + dTs(xs, b) ≤ t − r + 1 = dGi,j (a, b) + 1.

Now assume that dGi,j (a, b) = t − r + 1. Let zszs−1 ∈ E be an edge on
the shortest path between a and b in Gi,j such that zs ∈ Ns(x0) and zs−1 ∈
Ns−1(x0). Obviously, such an edge must exist, and we have dGi,j (a, b) = dGi,j (a,
zs−1) + dGi,j (b, zs) + 1. According to Lemma 2, both zs and zs−1 belong to
N [xs] or to N [xs−1]. Without loss of generality, assume they belong to N [xs].
Then, since Ts is a shortest path tree of Gi,j , dTs(xs, a) ≤ 1 + dGi,j (zs−1, a) and
dTs(xs, b) ≤ 1 + dGi,j (zs, b). Hence, dTs(a, b) ≤ 2 + dGi,j (zs, b) + dGi,j (zs−1, a) =
1 + dGi,j (a, b). This concludes our proof. �	

Lemma 6. If dGi,j (a, b) 
= dG(a, b), then a ∈ Ni+1(x0) or b ∈ Ni+1(x0).

Proof. Without loss of generality, assume that a ∈ Nr(x0), b ∈ Nt(x0) and i+1 ≤
r ≤ t ≤ j. We claim that there always exists a shortest path PG(a, b) between a
and b in G such that PG(a, b)∩Nj+1(x0) = ∅. If this is not the case, then there
must exist vertices c, d ∈ PG(a, b) ∩ Nj(x0) and c′, d′ ∈ Nj+1(x0) ∩ PG(a, b)
such that cc′ and dd′ are edges of PG(a, b). Obviously, cd /∈ E. According to
Lemma 2(second part), cxj , dxj ∈ E. Then, if we replace the part of PG(a, b)
between c and d with the path (c, xj , d), obviously we will get a shortest path
between a and b that does not intersect Nj+1(x0). So, we may assume that
PG(a, b) ∩ Nj+1(x0) = ∅.

If neither a ∈ Ni+1(x0) nor b ∈ Ni+1(x0), then i + 1 < r ≤ t. Since
dGi,j (a, b) 
= dG(a, b), we must be able to find four vertices e, f ∈ Ni+2(x0) ∩
PG(a, b) and e′, f ′ ∈ Ni+1(x0) such that ee′ and ff ′ are edges of PG(a, b). If
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e′f ′ ∈ E or e′ = f ′, then PG(a, b) is in Gi,j , i.e., dGi,j (a, b) = dG(a, b). Hence,
one may assume that e′f ′ /∈ E and e′ 
= f ′. Then, according to Lemma 2(second
part), e′xi+1, f

′xi+1 ∈ E and we can choose another shortest path between a
and b that does not intersect Ni(x0) and get dGi,j (a, b) = dG(a, b) again. Thus,
if neither a ∈ Ni+1(x0) nor b ∈ Ni+1(x0), then dGi,j (a, b) = dG(a, b). �	

We are ready to prove the following main lemma of this section.

Lemma 7. For any two vertices a, b ∈ V (G), there exists a local shortest path
tree T ∈ T such that dT (a, b) ≤ dG(a, b) + 1.

Proof. Let Gi,j be a subgraph of G, generated by Procedure 1, which contains
both vertices a and b and has the minimum difference j − i. If j − i = 1 then we
are done by Lemma 4. Therefore, in what follows we assume that j > i + 1, and
let s = 
(j − i)/2� + i + 1 and a ∈ Nr(x0), b ∈ Nt(x0), where i ≤ r ≤ t ≤ j. By
minimality of j − i, r < s ≤ t (if t < s then Gi,s−1 contains both a and b, and if
r ≥ s then Gs−1,j contains both a and b).

The case i ≤ r < s ≤ t ≤ j when dGi,j (a, b) = dG(a, b) is handled by Lemma
5. Assume now that dGi,j (a, b) 
= dG(a, b). Let PG(a, b) be an arbitrary shortest
path between a and b in G. By Lemma 6, r = i + 1. We claim that dG(a, b) =
t − r + 2. Indeed, since dGi,j (a, b) ≤ t − r + 3 (recall that a ∈ N [xi+1] ∪ N(xi)
and b ∈ N [xt] ∪ N(xt−1) by Lemma 1) and dGi,j (a, b) 
= dG(a, b), we must have
dG(a, b) ≤ t− r+2. On the other hand, if dG(a, b) ≤ t− r+1, then we can easily
show that all the vertices of PG(a, b) are in Gi,j , and thus dGi,j (a, b) = dG(a, b).

Consider now the local shortest path tree Ts ∈ T of Gi,j rooted at xs,
where s = 
(j − i)/2�+ i + 1. It is easy to show that dTs(xs, a) ≤ s − r + 2 and
dTs(xs, b) ≤ t−s+1. Combining the two inequalities, we get dTs(a, b) ≤ t−r+3.
Since dG(a, b) = t − r + 2, the lemma holds. �	

We can group the local shortest path trees from T into at most 2 log2(l−1)+4
spanning trees of G. Consider Procedure 1. At the beginning, G0,l = G and we
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Fig. 3. Spanning trees T ′
1 and T ′′

1 of an interval graph G from Fig. 2
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construct only two spanning trees of G, i.e., T ′
0 = {T ′

0}, T ′′
0 = {T ′′

0 }. In the
second iteration, G is decomposed into two subgraphs G0,s−1 and Gs−1,l where
s = 
l/2�+ 1. For each of the two subgraphs, the algorithm constructs two local
shortest path trees, i.e., T ′

1 = {T ′1
1, T

′2
1}, T ′′

1 = {T ′′1
1, T

′′2
1}. Since G0,s−1 and

Gs−1,l have only vertex xs−1 in common, we conclude T ′
1 := T ′1

1∪T ′2
1 and T ′′

1 :=
T ′′1

1∪T ′′2
1 are two spanning trees of G (see Fig. 3). In general, during the iteration

k of Procedure 1, for each of the 2k−1 subgraphs G0,j1 , Gj1,j2 , · · · , Gj2k−1−1,j of

G, we construct two local shortest path trees, i.e., T ′
k = {T ′1

k, T ′2
k, · · · , T ′2k−1

k },
T ′′

k = {T ′′1
k, T ′′2

k, · · · , T ′′2k−1

k }, where T ′γ
k and T ′′γ

k are the local shortest path
trees constructed for Gjγ−1,jγ (γ = 1, · · · , 2k−1). Again, for any γ = 1, · · · , 2k−1−
1, Gjγ−1,jγ and Gjγ ,jγ+1 have only vertex xjγ in common. Therefore, T ′

k :=⋃
1≤γ≤2k−1 T ′γ

k and T ′′
k :=

⋃
1≤γ≤2k−1 T ′′γ

k are two spanning trees of G. Since the
number of iterations is bounded by α ≤ log2(l−1)+2, in this way we will create
a system ST := {T ′

0, T
′′
0 , T ′

1.T
′′
1 , · · · , T ′

α, T ′′
α} of at most 2α spanning trees of G.

Furthermore, each local shortest path tree from T will be contained in one of
the spanning trees from ST as a subtree. Thus, we proved the following result.

Theorem 2. Any interval graph of diameter D admits a system of 2 log2(D −
1)+4 collective additive tree 1-spanners. Moreover, these trees can be constructed
in O(m log D) total time.

4 Sparse Spanner

Given the result in Theorem 1 that no constant number of trees can collectively
1-span a unit interval graph, it is somewhat surprising that there is a sparse
1-spanner of an interval graph that has fewer than 2n− 2 edges (i.e. the number
of edges in two disjoint spanning trees). To see this, we first present an algorithm
to produce a subgraph H of interval graph G. We then show that H has the
required number of edges and is in fact a 1-spanner of G.

PROCEDURE 2. Construction of a sparse 1-spanner for an interval
graph G.

Input: An interval graph G, and an interval ordering ≺ of V where for all
x ≺ y ≺ z if xz ∈ E, then xy ∈ E. Let D be the diameter of the graph G.

Output: A sparse 1-spanner H of G.

Method:
let xD be the last vertex in the ordering ≺; set EH := ∅;
add the edge from xD to its leftmost neighbor to EH ;
for i from D downto 1 do

let xi−1 be the left most neighbor of xi;
add to EH all edges from xi−1 to vertices to the right of xi−1 up to xi;
if i > 1 then add to EH all edges in G from xi−1 to vertices to the left

of xi−1.
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Fig. 4. (a) Graph G and its interval ordering ≺. (b) Sparse 1-spanner H with the edges
of P bold.

As an example of Procedure 2, consider Fig. 4(a) where the interval graph of
Fig. 2 is repeated together with an interval numbering. The 1-spanner H is shown
in Fig. 4(b) and the bold edges denote P , the path induced on {xi, 0 ≤ i ≤ D}.

We now show that H is a sparse 1-spanner of G.

Lemma 8. H is a 1-spanner of G with at most 2n − D − 2 edges.

Proof. First we show that H has at most 2n− D − 2 edges. To see this note:

– all vertices to the right of xD−1 have degree 1 in H and there is at least one
vertex here;

– all vertices to the left of xD−1 that are not on P have degree at most 2 in
H (by the interval ordering property);

– there are D − 1 edges joining the P \ {xD} vertices.

Thus the total number of edges in H is at most 1+2(n− (D +1))+D− 1 =
2n − D − 2, as required.

To see that H is a 1-spanner, consider arbitrary vertices x and y where x ≺ y
in the interval ordering. We now show that dH(x, y) ≤ dG(x, y) + 1. This is
clearly true if x is in P , so we assume that x is not in P . Now, suppose x is
between xi and xi+1 for i ≥ 0 and y satisfies xj ≺ y � xj+1, where i < j. (Note
that if i = j, then immediately dH(x, y) ≤ 2.)

Claim. dG(x, y) ≥ j − i.

Proof. Suppose to the contrary that there is a path Q in G of length less than
j − i. It is easy to see that the number of P vertices strictly between x and y is
j − i and thus some edge uv (where u ≺ v) of Q surrounds two P vertices xk

and xk+1 (i.e. u ≺ xk ≺ xk+1 ≺ v). Since uv ∈ EG, uxk+1 ∈ EG contradicting
xk being the left most neighbor of xk+1. �	
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Now suppose dG(x, y) = j − i as witnessed by path Q := (q0 =
x, q1, · · · , qj−i = y). Using the same argument as in the claim, for each k ∈
{0, 1, · · · , j − 1}, qk must lie between xi+k and xi+k+1. Since x = q0 is adjacent
to q1, and xi+1 is between q0 and q1, we know that x is adjacent to xi+1. Now
consider the path in H from x to xi+1, · · ·xj , y. This path has length j − i + 1.

Thus we may assume that dG(x, y) > j − i. But the path in H from x to
xi, · · ·xj , y has length j − i + 2 and we are finished. �	

Thus we have the following result:

Theorem 3. Any interval graph G of diameter D admits a sparse additive 1-
spanner with at most 2n−D−2 edges. Moreover, this spanner can be constructed
in O(n + m) time.

Proof. Given Lemma 4, we only have to establish the time complexity. There
are many linear time interval graph recognition algorithms that can be used to
determine an interval ordering of the given graph (for example see [3]). Using
this ordering, a straightforward implementation of Procedure 2 can be achieved
in linear time. �	

Furthermore, in the journal version of the paper we will show that the sparse
spanner returned by Procedure 2 can be used for efficient routing.

5 Concluding Remarks

The most obvious open question in this paper is to tighten the gap between the
lower and upper bounds for the size of a collective tree 1-spanner for interval
graphs.

The results stated in this paper also raise questions about additive c-spanners
for c > 1 for graph classes containing interval graphs. (Recall that interval graphs
have a single tree that 2-spans the graph [11,8].) In the journal version of the
paper, we will present proofs of the following theorems.

Theorem 4. No constant number of trees can collectively additively c-span
chordal graphs for c ≤ 3.

Theorem 5. No constant number of trees can collectively additively c-span
weakly chordal graphs for all constants c.

Theorem 6. Any HHD-free graph admits a system of at most 2 log2 n collective
additive tree 2-spanners. Moreover, such a set of trees can be constructed in
O(m log n) time.

For the proof of Theorem 6 we show an auxiliary result of independent in-
terest that any n-vertex HHD-free graph G has a separator S ⊆ V such that

– any connected component of G \ S has no more than n/2 vertices and
– S ⊆ (N [x] ∪ N [y]) for some vertices x, y ∈ S.

Moreover, S and such two vertices x and y can be found in linear time.
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