Abstract
In this paper we study the existence of a small set \(\mathcal{T}\) of spanning trees that collectively “1-span” an interval graph G. In particular, for any pair of vertices u,v we require a tree \(T \in \mathcal{T}\)such that the distance between u and v in T is at most one more than their distance in G. We show that:
– there is no constant size set of collective tree 1-spanners for interval graphs (even unit interval graphs),
– interval graph G has a set of collective tree 1-spanners of size O(log D), where D is the diameter of G,
– interval graphs have a 1-spanner with fewer than 2n – 2 edges.
Furthermore, at the end of the paper we state other results on collective tree c-spanners for c > 1 and other more general graph classes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chew, L.P.: There are planar graphs almost as good as the complete graph. J. of Computer and System Sciences 39, 205–219 (1989)
Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal Triple–free Graphs. SIAM J. Discrete Math. 10, 399–430 (1997)
Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs, under revision
Dragan, F.F., Yan, C., Corneil, D.G.: Collective Tree Spanners and Routing in AT-free Related Graphs (Extended Abstract). In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 68–80. Springer, Heidelberg (2004)
Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 64–76. Springer, Heidelberg (2004)
Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)
Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez Dispenser (or, Routing Issues in MPLS). SIAM J. Comput. 34, 453–474 (2005)
Kratsch, D., Le, H.-O., Müller, H., Prisner, E., Wagner, D.: Additive tree spanners. SIAM J. Discrete Math. 17, 332–340 (2003)
Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)
Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)
Madanlal, M.S., Venkatesan, G., PanduRangan, C.: Tree 3-spanners on interval, permutation and regular bipartite graphs. Inform. Process. Lett. 59, 97–102 (1996)
McKee, T.A.: Personal communication to E. Prisner (1995)
Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)
Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: Proc. 6th ACM Symposium on Principles of Distributed Computing, Vancouver, pp. 77–85 (1987)
Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the 13th Ann. ACM Symp. on Par. Alg. and Arch (SPAA 2001), pp. 1–10. ACM, New York (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Corneil, D.G., Dragan, F.F., Köhler, E., Yan, C. (2005). Collective Tree 1-Spanners for Interval Graphs. In: Kratsch, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2005. Lecture Notes in Computer Science, vol 3787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11604686_14
Download citation
DOI: https://doi.org/10.1007/11604686_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31000-6
Online ISBN: 978-3-540-31468-4
eBook Packages: Computer ScienceComputer Science (R0)