Skip to main content

Computing Branchwidth Via Efficient Triangulations and Blocks

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3787))

Included in the following conference series:

  • 1117 Accesses

Abstract

Minimal triangulations and potential maximal cliques are the main ingredients for a number of polynomial time algorithms on different graph classes computing the treewidth of a graph. Potential maximal cliques are also the main engine of the fastest so far \(\mathcal{O}\)(1.9601n)-time exact treewidth algorithm. Based on the recent results of Mazoit, we define the structures that can be regarded as minimal triangulations and potential maximal cliques for branchwidth: efficient triangulations and blocks. We show how blocks can be used to construct an algorithm computing the branchwidth of a graph on n vertices in time (2 + \(\sqrt{\rm 3}\))\(^{\it n}\) · n O(1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446n): a no-MIS algorithm. In: Proceedings of the 36th IEEE Symposium on Foundations of Computer Science (FOCS 1995), pp. 444–452 (1995)

    Google Scholar 

  2. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54, 444–453 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation graphs. SIAM J. on Discrete Math. 8, 606–616 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. on Computing 31(1), 212–232 (2001)

    Article  MATH  Google Scholar 

  6. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters 32, 547–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms. The MIT press, Cambridge (1990)

    MATH  Google Scholar 

  8. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In: Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms SODA 2001, pp. 329–337 (2001)

    Google Scholar 

  10. Fomin, F., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Gavril, F.: The intersection graphs of a path in a tree are exactly the chordal graphs. Journal of Combinatorial Theory 16, 47–56 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  13. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms SODA 2004, p. 328 (2004)

    Google Scholar 

  14. Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem. IEEE Transactions on Computers 35(9), 847–851 (1986)

    Article  MATH  Google Scholar 

  15. Kloks, T., Kratochvíl, J., Müller, H.: New branchwidth territories. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 173–183. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Mazoit, F.: Décompositions algorithmiques des graphes. PhD thesis, École normale supérieure de Lyon (2004) (In French)

    Google Scholar 

  17. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Appl. Math. 79(1-3), 171–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Paturi, R., Pudlak, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT. In: Proceedings of the 39th IEEE Symposium on Foundations of Computer Science FOCS 1998, pp. 628–637 (1998)

    Google Scholar 

  19. Robertson, N., Seymour, P.: Graph minors X. Obstructions to tree decompositions. Journal of Combinatorial Theory Series B 52, 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7(3), 425–440 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schoning, U.: A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems. In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science FOCS 1999, pp. 410–414 (1999)

    Google Scholar 

  22. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM Journal on Computing 6(3), 537–546 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  24. Williams, R.: A new algorithm for optimal constraint satisfaction and its implications. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1227–1237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F., Mazoit, F., Todinca, I. (2005). Computing Branchwidth Via Efficient Triangulations and Blocks. In: Kratsch, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2005. Lecture Notes in Computer Science, vol 3787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11604686_33

Download citation

  • DOI: https://doi.org/10.1007/11604686_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31000-6

  • Online ISBN: 978-3-540-31468-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics