Abstract
We use automata-theoretic approach to analyze properties of Fibonacci words. The directed acyclic subword graph (dawg) is a useful deterministic automaton accepting all suffixes of the word. We show that dawg’s of Fibonacci words have particularly simple structure. The simple structure of paths in these graphs gives simplified alternative proofs and new interpretation of several known properties of Fibonacci words. The structure of lengths of paths in the compacted subword graph corresponds to a number-theoretic characterization of occurrences of subwords in terms of Zeckendorff Fibonacci number system. Using the structural properties of dawg’s it can be easily shown that for a string w we can check if w is a subword of a Fibonacci word in time O(|w|) and O(1) space. Compact dawg’s of Fibonacci words show a very regular structure of their suffix trees and show how the suffix tree for the Fibonacci word grows (extending the leaves in a very simple way) into the suffix tree for the next Fibonacci word.
Research supported by the grants 4T11C04425 and CCR-0313219.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Crochemore, M., Rytter, W.: Jewels of stringology: text algorithms. World Scientific, Singapore (2003)
Smyth, W.: Computing Patterns in Strings. Addison-Wesley, Reading (2003)
Zeckendorff, E.: Représentation des nombres naturels par une somme des nombres de fibonacci ou de nombres de lucas. Bulletin de la Société Royale des Sciences de Liège 41, 179–182 (1972)
Costas Iliopoulos, D.M., Smyth, W.: A characterization of the squares in a fibonacci string. Theor. Comput. Sci. 172, 281–291 (1997)
Charras, C., Lecroq, T.: Handbook of Exact String Matching Algorithms. King’s College London Publications (2004)
Harju, T., Nowotka, D.: Density of critical factorizations. ITA 36, 315–327 (2002)
Berstel, J., Karhumaki, J.: Combinatorics on words – a tutorial. Bulletin of the EATCS 79, 178–228 (2003)
Mignosi, F., Pirillo, G.: Repetitions in the fibonacci infinite word. RAIRO Inform. Theor. Appl. 26, 199–204 (1992)
Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: FOCS 1999: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, p. 596. IEEE Computer Society, Washington, DC, USA (1999)
Mikulski, Ł.: Personal communication (2005)
Epifanio, C., Mignosi, F., Shallit, J., Venturini, I.: Sturmian graphs and a conjecture of moser. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 175–187. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rytter, W. (2006). The Structure of Subword Graphs and Suffix Trees of Fibonacci Words. In: Farré, J., Litovsky, I., Schmitz, S. (eds) Implementation and Application of Automata. CIAA 2005. Lecture Notes in Computer Science, vol 3845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11605157_21
Download citation
DOI: https://doi.org/10.1007/11605157_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31023-5
Online ISBN: 978-3-540-33097-4
eBook Packages: Computer ScienceComputer Science (R0)