Skip to main content

The Structure of Subword Graphs and Suffix Trees of Fibonacci Words

  • Conference paper
Implementation and Application of Automata (CIAA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3845))

Included in the following conference series:

  • 451 Accesses

Abstract

We use automata-theoretic approach to analyze properties of Fibonacci words. The directed acyclic subword graph (dawg) is a useful deterministic automaton accepting all suffixes of the word. We show that dawg’s of Fibonacci words have particularly simple structure. The simple structure of paths in these graphs gives simplified alternative proofs and new interpretation of several known properties of Fibonacci words. The structure of lengths of paths in the compacted subword graph corresponds to a number-theoretic characterization of occurrences of subwords in terms of Zeckendorff Fibonacci number system. Using the structural properties of dawg’s it can be easily shown that for a string w we can check if w is a subword of a Fibonacci word in time O(|w|) and O(1) space. Compact dawg’s of Fibonacci words show a very regular structure of their suffix trees and show how the suffix tree for the Fibonacci word grows (extending the leaves in a very simple way) into the suffix tree for the next Fibonacci word.

Research supported by the grants 4T11C04425 and CCR-0313219.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Crochemore, M., Rytter, W.: Jewels of stringology: text algorithms. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  2. Smyth, W.: Computing Patterns in Strings. Addison-Wesley, Reading (2003)

    Google Scholar 

  3. Zeckendorff, E.: Représentation des nombres naturels par une somme des nombres de fibonacci ou de nombres de lucas. Bulletin de la Société Royale des Sciences de Liège 41, 179–182 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Costas Iliopoulos, D.M., Smyth, W.: A characterization of the squares in a fibonacci string. Theor. Comput. Sci. 172, 281–291 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charras, C., Lecroq, T.: Handbook of Exact String Matching Algorithms. King’s College London Publications (2004)

    Google Scholar 

  6. Harju, T., Nowotka, D.: Density of critical factorizations. ITA 36, 315–327 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Berstel, J., Karhumaki, J.: Combinatorics on words – a tutorial. Bulletin of the EATCS 79, 178–228 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Mignosi, F., Pirillo, G.: Repetitions in the fibonacci infinite word. RAIRO Inform. Theor. Appl. 26, 199–204 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: FOCS 1999: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, p. 596. IEEE Computer Society, Washington, DC, USA (1999)

    Google Scholar 

  10. Mikulski, Ł.: Personal communication (2005)

    Google Scholar 

  11. Epifanio, C., Mignosi, F., Shallit, J., Venturini, I.: Sturmian graphs and a conjecture of moser. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 175–187. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rytter, W. (2006). The Structure of Subword Graphs and Suffix Trees of Fibonacci Words. In: Farré, J., Litovsky, I., Schmitz, S. (eds) Implementation and Application of Automata. CIAA 2005. Lecture Notes in Computer Science, vol 3845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11605157_21

Download citation

  • DOI: https://doi.org/10.1007/11605157_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31023-5

  • Online ISBN: 978-3-540-33097-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics