Skip to main content

Prime Normal Form and Equivalence of Simple Grammars

  • Conference paper
Implementation and Application of Automata (CIAA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3845))

Included in the following conference series:

  • 450 Accesses

Abstract

A prefix-free language is a prime if it cannot be decomposed into a concatenation of two prefix-free languages. We show that we can check in polynomial time if a language generated by a simple context-free grammar is a prime. Our algorithm computes a canonical representation of a simple language, converting its arbitrary simple grammar into Prime Normal Form (PNF); a simple grammar is in PNF if all its nonterminals define primes. We also improve the complexity of testing the equivalence of simple grammars. The best previously known algorithm for this problem worked in O(n 13) time. We improve it to O(n 7 log2 n) and O(n 5 polylog v) deterministic time, and O(n 4 polylog n) randomized time, where n is the total size of the grammars involved, and v is the length of a shortest string derivable from a nonterminal, maximized over all nonterminals. Our improvement is based on a version of Caucal’s algorithm from [1].

The research of the first three authors was supported by NSERC and the research of the fourth author was supported by the grants KBN 4T11C04425 and ITR-CCR-0313219.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Caucal, D.: A fast algorithm to decide on simple grammars equivalence. In: Djidjev, H.N. (ed.) Optimal Algorithms. LNCS, vol. 401, pp. 66–85. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  2. Courcelle, B.: Une forme canonique pour les grammaires simples deterministes. RAIRO informatique, 19–36 (1974)

    Google Scholar 

  3. Korenjak, A.J., Hopcroft, J.E.: Simple deterministic languages. In: Proc. IEEE 7th Annual Symposium on Switching and Automata Theory. IEEE Symposium on Foundations of Computer Science, pp. 36–46 (1966)

    Google Scholar 

  4. Harrison, M.: Introduction to formal language theory. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  5. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. Theoretical Computer Science 158, 143–159 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Karpinski, M., Rytter, W., Shinohara, A.: Pattern-matching for strings with short descriptions. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 205–214. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching for strings in terms of straight-line programs. Journal of Discrete Algorithms 1, 187–204 (2000)

    MathSciNet  Google Scholar 

  9. Debski, W., Fraczak, W.: Concatenation state machines and simple functions. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 113–124. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Prime decompositions of regular prefix codes. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 85–94. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Fraczak, W., Podolak, A.: A characterization of s-languages. Information Processing Letters 89, 65–70 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited: extended abstract. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pp. 869–878. SIAM, Philadelphia (2004)

    Google Scholar 

  13. Courcelle, B.: An axiomatic approach to the Korenjak-Hopcroft algorithms. Mathematical Systems Theory 16, 191–231 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rytter, W.: Application of Lempel–Ziv factorization to the approximation of grammar-based compression. Theoretical Computer Science 302, 211–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bastien, C., Czyzowicz, J., Fraczak, W., Rytter, W. (2006). Prime Normal Form and Equivalence of Simple Grammars. In: Farré, J., Litovsky, I., Schmitz, S. (eds) Implementation and Application of Automata. CIAA 2005. Lecture Notes in Computer Science, vol 3845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11605157_7

Download citation

  • DOI: https://doi.org/10.1007/11605157_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31023-5

  • Online ISBN: 978-3-540-33097-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics