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Abstract 

Using historical information to predict future runs 
of parallel jobs has shown to be valuable in job 
scheduling. Trends toward more flexible job-
scheduling techniques such as adaptive resource 
allocation, and toward the expansion of scheduling to 
grids, make runtime predictions even more important. 
We present a technique of employing both a user’s 
knowledge of his/her parallel application and historical 
application-run data, synthesizing them to derive 
accurate and scalable predictions for future runs. These 
scalable predictions apply to runtime characteristics for 
different numbers of nodes (processor scalability) and 
different problem sizes (problem-size scalability). We 
employ multiple linear regression and show that for 
decently accurate complexity models, good prediction 
accuracy can be obtained. 

1 Introduction 
The typical approach in parallel job scheduling is 

that users provide estimates about the runtimes of their 
jobs with such estimates being, in the general case, 
much higher than the actual runtime (ranging from 
20% [12] to 16 times [11] higher in different studies 
for different supercomputing centers).  The availability 
of more accurate information about runtimes of parallel 
programs has been shown to be valuable to improve 
average response times. However, results also exist 
suggesting that the overestimation of runtimes provides 
some benefits by creating holes in the schedule that can 
be filled with short jobs [10]. Thus, the need for 
accurate estimates in standard job scheduling is not yet 
fully decided. However, in the context of grid 
scheduling for simultaneous execution of jobs on 
multiple sites, reservations of resources on remote sites 
is required and prediction is unequivocally relevant. 
The simplest approach to obtain accurate estimates is 
recording runtimes of previous job executions and 
using them to predict future runtimes with the same job 
configuration and the same number of resources. For 
grid computing, more detailed runtime information 
may be needed to estimate performance on different 

systems. Furthermore, grid middleware may be 
composed of different components, and a more detailed 
recording of these components (and their performance 
for certain applications and machines) are needed to 
support optimal configuration of grid jobs [16]. 

To make matters more complicated, modern job 
scheduling employs advanced approaches such as 
flexible time sharing and adaptive resource allocation 
[6]. Flexible time sharing means relaxing global 
synchronous gang scheduling if jobs can be matched 
well [8][4] or could mean abandoning global control 
altogether [14]. In both cases the aim is improving 
resource utilization. Adaptive resource allocation 
means that the number of nodes allocated to a job 
changes during its runtime, typically driven by the 
changing workload of the machine [7][2]. Time sharing 
makes it necessary to know more detailed application 
characteristics such as the fractions of total runtime 
spent on communication and I/O, to allow us to find 
proper matches and estimate slowdowns. For adaptive 
resource allocation, it becomes relevant to estimate 
runtime on different numbers of resources; if we can 
predict resource times with different numbers of nodes, 
we can better predict the benefits of certain adaptation 
decisions. This leads to the challenge of generating 
scalable predictions, i.e. predicting resource times with 
allocations other than those previously measured. Such 
scalable prediction is also useful if the user moves to 
larger problem sizes for which no performance data is 
available yet.   

Several approaches exist which utilize special 
compilers to provide performance models of 
applications. A difficulty of this approach is that 
abstract models may not always be extractable in a 
fully automated manner, particularly if the code 
behavior is complex. As well, runtime measurements 
or simulations are typically needed for quantification of 
the parameters. Our target is a standard job-execution 
environment running primarily MPI based applications, 
and not equipped with any such special compilers. 
However, we assume that users have some rough 
knowledge of their applications and know, for 
example, which parameters in their application 



determine runtime. Furthermore, users may be able to 
provide rough cost estimations (closely resembling the 
steps needed to derive complexity estimates) as 
suggested in [15]. Whether estimated formulas for 
performance models are provided by the user or 
extracted by a special compiler, the system must then 
perform quantification of coefficients within the 
formula, to turn the rough estimate into a concrete 
model for the system being used.  This challenge 
motivates the following goals for our ScoPred 
performance predictor: 

 Support prediction of overall execution times as 
well as prediction of resource times (computation, 
communication, I/O)  

 Support such prediction on the same and on 
different numbers of nodes (scaling the 
prediction) 

 Assume that a rough model is available as input 
such as via cost/complexity estimations from the 
user (user-directed) or a formula provided by the 
compiler (compiler-directed) and leave all 
quantification (determination of coefficients) to 
the system 

 Provide a practically feasible approach 
 Provide a mathematically sound approach 

In our ScoPred approach, we apply the following 
innovative solutions toward meeting these goals: 

 Take the performance-determining parameters 
and a rough resource-usage model as input 

 Employ multiple linear regression to determine 
the coefficients and provide mean values, 
confidence intervals, and prediction intervals 

2 Related Work 
Performance data bases or repositories were first 

proposed in [9], Due to a lack of models describing the 
application behavior, measurements such as runtime or 
memory usage were used to interpolate the runtime of 
future runs from previous measurements, i.e. no scaling 
was applied. The approach is extended in [13] to 
consider a number of additional criteria such as the 
application parameters. The difficulty addressed by 
considering the different criteria is to associate the 
runtimes with a particular application and the correct 
instance of that application. This can become difficult 
as a single user may run the same application with 
different parameters and under different names [9][13].  

Furthermore, to estimate the cost under varying 
resource allocation, a proper cost model needs to 
consider the fact that speedup curves are not linear but 
that the curve typically flattens (and finally declines) if 
more resources are allocated. In [5], a general 
statistical model is proposed which is useful for 
studying general adaptation benefits in simulation 
studies. This, however, does not help us to find an 

application’s specific cost model. The Grads project 
[17] employs performance models created by the 
compiler to predict performance and monitors whether 
these predictions are met. The approach in [19] 
considers floating-point operations and accesses to the 
memory hierarchy to predict performance on different 
architectures, while focusing on the memory accesses. 
Memory accesses are extracted via a simulator, and 
application characteristics are convolved with machine 
characteristics. In [18], a prediction model for different 
architectures is described which extracts the program 
structure by static analysis of the program binary, after 
which execution profiling is used to obtain dependence 
on parameters such as execution frequency for vertexes 
in the program graph and reuse distances for memory 
locations. Linear regression is applied, but only used 
for the memory-access cost, and the approach currently 
only considers single-CPU performance. Scalability is 
not considered. 

The most closely related approach is presented in 
[15]. This approach takes cost/complexity estimations 
as input, while differentiating explicitly different 
sources of overhead such as communication, load 
imbalance, or synchronization loss. Coefficients are 
then obtained from actual program runs.  

Both [18] and [15], consider linear combinations 
of cost terms. In [15], either additive or multiplicative 
combinations are possible, the latter describing 
interaction between cost terms. Predictions are 
compared to actual runtimes, with the average relative 
error found for 2D FFT to be only 12.5%, whereas 
simple linear interpolation (without interactions) 
resulted into an error of 750%. The approach considers 
different parameters and employs a least-squares 
method but does not provide confidence or prediction 
intervals. 

3 The Prediction System 
3.1 Overall Framework 

The ScoPred performance predictor is embedded 
into a job-scheduling and job-control framework as 
shown in Figure 1. Several tools interact via an 
integrated design. The Dynamic Directory stores 
information about the current job execution, including 
user-provided estimates, and retrieves information 
about previous runs from a performance repository. 
The ScoPro monitor [1] provides information about the 
characteristics of jobs such as the fraction of 
computation, communication, and I/O time as well as 
slowdowns under coscheduling. Furthermore, it can 
monitor progress on heterogeneous resources. ScoPro 
employs dynamic instrumentation and can, for loosely 
synchronous applications, extract behavior from a few 
iterations. The adaptation controller interacts with the 



application, determining potentially new workload 
targets per node and initiating the adaptation. In [3], we 
have presented an approach to perform such adaptation 

via overpartitioning or partitioning from scratch in 
either the time or space dimension. 

 
 

Figure 1. Overall integrated framework for job scheduling and job control. Solid arrows indicate invocations 
and a labeled with the corresponding function. 

3.2 Application Model 
We apply the view that application performance 

is dominated by certain data structures or computations 
that depend on a few critical parameters, such as the 
size of an array.  Often these parameters determine the 
problem size of the application and changing the 
parameters changes the problem size. Then, it would be 
possible to model application performance by 
modeling the dependence of the cost on these 
parameters. In many cases, an application’s user is 
aware of which application parameters are critical, as 
the user may explicitly want to change them to switch 
to a different problem size. In this case, the user should 
be able to specify which these parameters are. 

Typically such parameters appear as input to the 
application but they may also be statically compiled 
into the code. We assume in the following that the 
values of the critical parameters are specified with the 
submission of the job (it would not be difficult to build 
a corresponding programming environment that makes 
such submissions straightforward). Furthermore, we 

assume that a unique identification is attached to the 
application (the name is not necessarily sufficient and 
may be different for program versions compiled for 
different numbers of nodes). We do not make any 
efforts to automatically match jobs as done in [9][13], 
but instead focus on the prediction aspect.  

We assume that the user, in addition to the 
specification of the critical parameters, also provides a 
rough cost estimate describing the qualitative/structural 
relationship (without the quantification of system 
dependent coefficients). Such estimates could be close 
to the estimations represented by mathematically 
derived algorithmic complexity estimates. Importantly, 
complexity-oriented estimations would focus on the 
complexity of the model expressed in various terms 
such as T = 2 M3 + log(N) + log(N) * M with T being 
the runtime, M being the size of one dimension in a 
matrix, and N being the number of nodes. Let us 
assume that the first term specifies computation cost in 
terms of computation steps and the second and third 
term specify communication cost in terms of sizes and 
numbers of messages. Note that the coefficients from 
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the replication in iteration steps as well as the 
computation time per step, message startup cost and 
transfer cost are omitted. These are the coefficients to 
be determined by the predictor. We assume that the 
estimate takes the form of a linear combination of 
different cost terms. However, as will be explained 
below, variables may be multiplied within the terms. 

The idea is to specify a rough cost formula which 
only reflects critical, i.e. dominating performance 
influences. The system should provide the possibility 
to add an automatic correction to approximate missing 
cost terms which are not crucial but also not negligible 
if high prediction accuracy is to be obtained. What is 
exactly to be modeled depends on the application and 
on the desirable range of prediction. Thus, if a small 
problem size fits into the cache and a larger one does 
not, and this significantly influences performance, the 
memory access cost in dependence to the parameters 
should be modeled. Similarly, if load imbalance could 
become an issue, this should also be modeled, etc. Note 
that an alternative to the user providing specifications 
is the compiler providing them. In this case, the derived 
formulas may be more detailed though the compiler 
might require monitoring / runtime feedback or a 
simulator to prune irrelevant details and extract the 
relevant formulas. 

Our current prediction system works for a 
particular machine, i.e. we do not include any machine 
model and prediction facilities across machines. 

3.3 Architecture and Functionality  
In the following, we describe the details of the 

predictor functionality. The ScoPred predictor takes as 
input:  

 Specifications of the critical parameters and the 
estimation formulas depending on them 

 The actual values of the critical parameters for the 
current job submission 

 Information about previous runs of the same 
application (parameters values and performance 
of the job run) 
Note that the number of nodes on which the 

application is run is typically one of the critical 
parameters (unless the application always runs with the 
same number of nodes).  

The values predicted may be: 
 Runtime of the whole job 
 Differentiated time consumed on different 

resources such as computation time (CPU), 
communication time (network), and I/O time 
(disk). 
The latter requires that the monitor provides the 

actual times for the different program execution 
components from previous runs to match them against 

the prediction. Providing cost estimations for different 
resources is typically not a problem for the user 
because these different aspects need to be considered 
(as far as applicable) to obtain an estimation of the 
runtime function for the whole job. 

The goal of the estimation may be to predict  
1. Future runtimes with the same parameter 

values 
2. Future runtimes with different problem sizes 

(one or several of the parameters other than 
the number of nodes) 

3. Future runtimes with a smaller or higher 
degree of parallelism (smaller or larger 
number of nodes) 

4. Combinations of different problem sizes and a 
different degree of parallelism 

Option 3 can be applied if resources are allocated 
adaptively (as for malleable or moldable applications), 
and is thus of particular interest. Option 4 is a typical 
case, as for production runs (runs other than tests for 
speedup graphs with varying numbers of nodes) there 
is typically a correlation between problem size and 
number of nodes, i.e. larger problem sizes require a 
larger number of nodes and vice versa. Note that this 
option is always at least a two-variable prediction, 
whereas the others potentially predict a single variable 
only. Options 2, 3, and 4 require the scalability features 
of our predictor. 

The prediction system provides point estimates of 
the mean of values, and associated confidence and 
prediction intervals. 

4 Multiple Linear Regression and Its 
Application in ScoPred 

4.1 Overview of Multiple Linear 
Regression 

Linear regression, also known as linear least 
squares regression, is a widely used mathematical 
modeling technique [20]. Given a data set and an 
appropriate function, least squares regression 
determines the values for coefficients within the 
function that produce an equation which best fits the 
data set. Simple linear regression applies to equations 
with a single dependent variable, and a single 
independent variable. Multiple linear regression applies 
to equations with a single dependent variable and 
multiple independent variables. 

In order to be appropriate for linear regression, 
the supplied function must be linear in the parameters 
[21]. This is satisfied if and only if the function is of 
the form [20]: 

f x :B = B0 + B1x1 + B2x2 + ... + Bkxk      (1) 



where: 
 Each independent variable (x1, x2, ..., xk) in the 

function is multiplied by an unknown coefficient 
(B1, B2, ..., Bk). 

 There is at most one unknown coefficient with no 
corresponding independent variable (B0). 

 The individual terms are summed to produce a 
final function value.  
The independent variables may be the product of 

several application parameters, and particular 
application parameters may be components of more 
than one independent variable, though no two 
independent variable may be exactly the same. For 
instance, 

         yi = B0 + B1 sqrt(x) + B2 x2 + B3 xz + B4 z        (2) 

is a valid function. 
Given a function which satisfies the above 

conditions, we can relate the function to the data set by 
adding an error component,  ε: 

     f x : B = B0+B1x1 + B2x2 +...+ Bkxk+ ε    (3)     
In all but perfect models, the value of ε will vary 

for each observation. The total set of ε values is 
referred to as the error component, or set of residuals. 
Three assumptions must hold regarding error 
component [22]. 

The set of values of ε must: 
 Be independent, in the probabilistic sense (the 

value of a particular ε value should be unrelated 
to the other values of ε, except insofar as they 
satisfy these conditions) 

 Have a mean of 0 and a common variance 
 Have a normal probability distribution 

Given a suitable function and data set, we can 
calculate the values for the coefficients such that the 
sum of the squares of the residual values is minimized. 
That is, we choose B0, B1, ... Bk such that 

SSE
i 1

k

yi y i
2

 
is minimized, where yi refers to the ith observed 

response value, and ŷi refers to the value of (1) with the 
ith observations of all dependent variables. 

To find values for the coefficients which 
minimize SSE, partial differentials of (1) are taken with 
respect to each unknown coefficient. The resulting set 
of partial differential equations is then solved as a 
system of linear equations. For further details, refer to 
[21][20]. 

4.2 Statistical Tests and Metrics 
There are several ways of evaluating how well a 

calculated regression equation fits the data. Two 

commonly used measures of a fit's significance are the 
coefficient of determination, and the analysis of 
variance F-test [22].  

The coefficient of determination (often called R2 
or multiple R2) [22] expresses the proportion of the 
variance that is explained by the regression model. 
Informally, this is a measure of how much better the 
model is at expressing the relationship, as compared to 
simply using the mean of the response data. An R2 
value of 0 indicates that the mean of the response data 
is a better predictor of the response, whereas an R2 
value of 1.0 indicates that the response fits the curve 
perfectly, explaining away 100% of the deviation from 
the mean in each response value. For convenience, we 
consider any value less than 0 to be equivalent to 0, 
and this allows us to interpret the coefficient of 
determination as a percentage. A value related to the 
coefficient of determination is the adjusted R2, or 
shrunken R2. As the number of independent variables 
in a regression formula rises, the R2 value becomes 
artificially inflated. To compensate for this effect, the 
adjusted R2 value takes into account the number of 
independent variables [22]. 

Another way of testing whether a regression 
model is significant is through a statistical test. For any 
given configuration of coefficient values we can test 
whether the data supports that configuration at a given 
confidence level. If the regression model is significant, 
then at least one of the independent variables is 
contributing significant information for the prediction 
of the response variable [22]. To prove this, we attempt 
to reject the contrapositive statement that no 
independent variable contributes any information for 
the prediction of the response. This is referred to as the 
null hypothesis, and we attempt to reject it with 95% 
confidence. If successful, we have shown with 95% 
confidence that at least one of the independent 
variables is contributing significant information for the 
prediction of the response variable. That is, the 
regression model is significant. 

4.3 Using a Regression Model for 
Prediction 

Once the regression model is generated and we 
have verified that the model effectively describes the 
relationship between the predictor variables and the 
response, the model can be used to predict the response 
for given values of the independent variables. These 
predictions take the form of a point estimate which is a 
prediction of the mean function value for a certain 
parameter-value combination. In addition, the 
confidence interval (typically 95%) is provided, 
describing the probability with which the mean value 
of future observations for this parameter-value 
combination falls into the corresponding interval. 



Furthermore, a prediction interval is provided which 
describes the probability that future observed function 
values fall into the corresponding interval. Note that 
both the confidence and the prediction interval become 
wider as the parameter-value combinations are further 
away from the means of the observed values of the 
independent variables used to build the regression 
model, i.e. the prediction becomes less reliable. 

4.4 Multiple Linear Regression in Parallel 
Performance Prediction 

Given the above explanations, we can now 
explain how a scalable model of an application can be 
built through a straightforward application of linear 
regression. Given an application that we wish to model, 
we proceed as follows. To start, the static (static 
variables) or dynamic parameters (arguments of the 
program invocation) of an application, which are 
specified to influence the application’s characteristics, 
are considered as components of the independent 
variables of our model. Similarly, application 
characteristics that we wish to construct a model of 
(runtime, I/O time, etc) are considered as the response 
variables. By storing the parameters with which 
application runs are submitted, and the corresponding 
observations of the characteristic under study, we build 
a data set of our independent and response variables. 

At this point we have a data set, but we still need 
a function to fit to the data. As described above, the 
function is supplied by the user (or by a compiler) as an 
estimation formula (see Section 3.2,) of the relation 
between the characteristic under study and the 
application parameters. However, it is still lacking a 
quantification of the coefficients. Coefficients (that 
unknown at this point) are automatically added into the 
equation by our system in a manner that ensures the 
resulting equation is linear in the parameters. Once we 
have added the unknown coefficients, we have an 
equation of the form described in Section 4.1. We can 
now use linear regression to determine the 
quantification by calculating values for the coefficient 
variables that best fit the equation to the data, giving us 
a model of the application. 

By substituting in the parameters, the model can 
be used to predict the performance of the characteristic 
under study for a future run of the application. We use 
statistical measures such as the coefficient of 
determination, R2 and the analysis of variance F-test to 
determine how successful the regression model fits the 
data, and to calculate confidence intervals for our 
predictions. 

Since fitting the function values into a regression 
model always involves some inaccuracy regarding the 
individual values for certain parameter-value 
combinations (points), employing the prediction from 

the model for points with available observations is not 
very meaningful. We can gain better predictions by 
only considering the different historical values for 
exactly the corresponding point. The main benefit from 
the regression model comes from predicting 
performance for new parameter-value combinations. 

4.5 Implementation 
We have used Java to write the overall interface 

for our performance predictor. This interface handles 
the interaction with the job scheduler and the dynamic 
directory in regards to storage of new or modified 
application profiles and retrieval of existing profiles. 
All statistical calculations are performed through calls 
to the Waterloo Maple symbolic algebra system [27] 
using custom functions programmed in Maple's native 
language. To allow the Java components access to the 
Maple components, we used the OpenMaple API for 
Java [28], which allows us to call code in a running 
Maple environment from external Java programs. The 
calls to the Maple environment to calculate a model, or 
make a prediction based on an existing model take in 
the order of a second, which is acceptable in a job-
scheduling environment for parallel machines. 

5 Experimental Evaluation 
5.1 Experimental Setup 

To evaluate our system, we have chosen the 
Linpack benchmark [29] and two applications from the 
NAS Parallel Benchmarks Version 2.4 [23]. The 
selected NAS benchmarks are the EP embarrassingly 
parallel benchmark, and the FT 3D Fast Fourier 
transformation benchmark. 

Some of the tests were run on a local 16 node 
Debian GNU/Linux cluster running Linux kernel 2.6.6. 
Each node of this cluster is equipped with 2 Intel Xeon 
2.0Ghz processors, of which our tests only use one. 
Other tests requiring more than 16 nodes were run on 
64 nodes of a Redhat GNU/Linux cluster running 
Linux kernel 2.6.8.1. Each node of this cluster is 
equipped with 2 Intel Opteron/244 1.8Ghz processors, 
of which our tests only use one. Each cluster uses a 
Myrinet network for application-level communication, 
using MPIch version 1.2.6 over GM.  

Each benchmark was run for varying problem 
sizes and different numbers of nodes (NAS provides a 
number of different categories: S, W, A, B, etc. which 
have increasing problem sizes, and Linpack allows 
problem sizes and node configurations to be specified). 
For each configuration of problem size/nodes, each 
benchmark was run 3 times, unless specified otherwise. 
For the subset of gathered data selected for each test, 
we feed all data into our predictor but for the sake of 
clarity only show the mean values in the tables below. 



After providing a subset of the gathered data to our 
predictor, predictions are made for the excluded 
problem size/nodes configurations.  

We test the following cases: 
 Processor Scalability: Prediction towards larger 

number of nodes given data for a smaller number 
of nodes (malleability test or test for user 
choosing new number of nodes) 

 Problem-size Scalability: Prediction towards 
larger problem sizes given data for smaller 
problem sizes (user switching to larger problem 
size) 

 Problem-size/Processor Scalability: Prediction 
towards larger problem sizes and larger number 
of processors given data from situations with data 
for smaller numbers of nodes/problem size (user 
switching to larger problem size on larger number 
of nodes) 
Whenever possible, we omit observations with 

runtimes of less than one second and in some of our 
experiments below this limits the number of 
experiments we can perform on the gathered data sets. 

5.2 EP 
The EP benchmark represents the simplest of 

parallel programs. Communication occurs only twice: 
once when the job begins, sending a segment of the 
total work to each of the nodes; and once right before 
the job terminates, collecting back the results of each 

node's calculations. The lack of communication time 
makes this benchmark very simple to model, and we 
use it as a demonstration of our technique. 

We ran the EP benchmark on the local 16 node 
cluster, varying the number of nodes from 2 to 16 in 
increments of 2. The mean values of the three gathered 
observations for each configuration are shown in Table 
1.  

Before this data can be entered into our system, 
we must provide an estimate of how the benchmark's 
runtime varies with its parameters. To do so, we 
consider the benchmark's algorithm. The EP 
benchmark accepts two parameters, the number of 
nodes (P), and the problem size (N). Each node is 
assigned the task of generating (N/P) pairs of Gaussian 
random deviates according to a specific scheme, and 
tabulates the number of pairs in successive annuli [23]. 
Since the time to generate a pair of random numbers is 
relatively constant, we estimate that the runtime (T) of 
a particular job will be given by: 

T = N / P 
This estimate is entered into our system. As the 

first step toward turning this estimate into a detailed 
model, the system adds unknown coefficients into the 
equation, giving us: 

T = B1 (N / P) + B0 

where B1 and B0 represent the unknown constants 
added by our system. 

 

Table 1. Mean values for EP benchmark observations. 

nodes \ class S = 224 W = 225 A = 228 B = 230 

2 2.10 4.19 33.60 138.24

4 1.09 2.10 16.81 67.28

6 0.72 1.46 11.26 44.82

8 0.54 1.09 8.40 34.86

10 0.43 0.87 6.74 29.03

12 0.36 0.71 5.62 22.47

14 0.31 0.62 5.17 20.11

16 0.28 0.56 4.36 17.38

. 
In the first experiment, we test our system for 

processor scalability, using data from the A and B 
columns. Table 2 shows the results of using our system 
to model either the A or B column, i.e. the table shows 
the result of two separate sets of processor-scalability 
predictions. In each column, a subset of the 
observations is input into the system (shown in light 
grey). The cells highlighted in darker grey are the 

predictions of our system given the input data for that 
column. For each value we provide a point estimate, 
followed by the 95% confidence interval, and the 95% 
prediction interval (in parenthesis). Below the point 
estimate and confidence/prediction intervals is the 
percentage that the estimate deviates from the mean of 
the observations. 



For the A column test outlined in Table 2, the 
system assigns a value of  1/3996971.35 for B1 and a 
value of 0.025 for B0, giving the model: 

T = (N / 3996971.35 P) + 0.025 

For the B column, the values of B0 and B1 are similar, 
giving us the model: 

T = (N / 3906469.72 P) + 0.085 
We observe in Table 2 that our predictions tend to 

be a bit low, though all predictions are well within a 
10% deviation from the mean of the observations. 
While our predictions for Class A come very close, the 

mean of the observations does not fall within the 95% 
confidence or prediction intervals for the 14 and 16 
node predictions. For Class B, the mean of the 
observations is within both the 95% confidence and 
prediction intervals for all predictions. This does not 
necessarily indicate that the predictions for Class B are 
better as we observe that the confidence and prediction 
intervals for Class B are considerably wider. This is 
likely due to greater variation observed between data 
points of the same configuration for Class B.

  

Table 2. Results of processor-scalability predictions for 12, 14, and 16 node cases in the EP benchmark. 

nodes \ class A = 228 B = 230 

2 33.60 138.24

4 16.81 67.28

6 11.26 44.82

8 8.40 34.86

10 6.74 29.03

5.62 +/- 0.03 (0.08) 22.99 +/- 2.77 (8.09)12 
- 0.06% + 2.31%

4.82 +/- 0.03 (0.08) 19.72 +/- 2.89 (8.13)14 

- 6.71% - 1.96%

4.22 +/- 0.03 (0.08) 17.26 +/- 2.98 (8.16)16 

- 3.21% - 0.73%
 

Table 3. Results of problem-size scalability prediction of the B problem size for the EP benchmark. 
nodes \  class S = 224 W = 225 A = 228 B = 230 

134.43 +/- 0.18 (0.19) 2 2.10 4.19 33.60 
- 2.76% 

67.17 +/- 0.27 (0.29) 4 1.09 2.10 16.81 
- 0.17% 

44.92 +/- 0.34 (0.36) 6 0.72 1.45 11.26 
+ 0.22% 

33.49 +/- 0.28 (0.30) 8 0.55 1.09 8.40 
- 3.94% 

In our second experiment, we test our system with 
the task of problem-size scalability, modeling the 2, 4, 
6, and 8-processor rows respectively. We provide the 
data for problem sizes S, W, and A for each processor 
row, and use the generated model to predict problem 
size B for that row. The results are shown in Table 3. 

We see that our predictions are very good, with 
all predictions less than 5% from the mean of the actual 
observations. Also, in all but the 2 processor case, the 
mean of the actual observation is within the 95% 
confidence and prediction intervals. 



In our final experiment for the EP benchmark, our 
system is tested with the task of modeling both 
problem size and number of processors simultaneously. 
We provide the system with columns S, W, and A and 
rows 2, 4, 6, 8, and 10, and use the generated model to 
predict A on 12, 14, and16 processors, and B on 8, 10, 
12, 14, and 16 processors. The results are shown in 
Table 4. 

The multivariate model created by entering 
observations varying in both number of nodes and 

problem-size is almost as successful as the models of 
one or the other alone. All values are within 6% of the 
observed mean, and none of the observed means falls 
outside of the 95% prediction interval (only one falls 
outside the 95% confidence interval). 

Finally, we want to note that the R2 values for 
these predictions are close to 1 and that the F tests are 
passed at a greater than 95% confidence level in all 
cases.

 

Table 4. Results of problem-size/processor scalability predictions for the EP benchmark. 

nodes \ class S = 224 W = 225 A = 228 B = 230 

2 2.10 4.19 33.60

4 1.09 16.81

6 0.72 1.45 11.26

34.39 +/- 0.61 (3.95)8 0.55 1.09 8.40 
- 1.36 %

27.51 +/- 0.59 (3.95)10 0.43 0.87 6.74 

- 5.23 %

5.73 +/- 0.63 (3.95) 22.93 +/- 0.58 (3.94)12  
+ 1.90 % + 2.05 %

4.91 +/- 0.64 (3.95) 19.65 +/- 0.58 (3.94)14  

- 4.97 % - 2.30 %

4.29 +/- 0.64 (3.95) 17.19 +/- 0.59 (3.94)16  

- 1.61 % - 1.13 %

 
5.3 FT 

The FT benchmark solves a partial differential 
equation (PDE) using a 3-D Fast Fourier Transform 
(FFT) [23]. The 3-D FFT is solved using a standard 
transpose algorithm. Due to the nature of the algorithm, 
it can only be run on a power-of-two number of nodes. 
The FT benchmark is more complex to model than the 
EP benchmark, as there is extensive communication 
throughout the application run. 

The algorithm employs a 3-dimensional array 
which determines the problem size. Though  the   size 
of the FFT array is set for each class of benchmark, the 
user  may vary   the  number  of   iterations   performed      
 
 
 
 
 
 

 
for each class. We have set all tests to 6 iterations to 
make the runs with different problem sizes comparable. 
In each iteration, a 3-D FFT is performed, and the 
resulting data set is evolved before being used as the 
input for the next iteration. 

The FT benchmark was run for 2, 4, 8, 16, 32 and 
64 nodes with problem sizes varying from Class S 
(64x64x64) to Class C (512x512x512). The mean 
values of the application runs are summarized in Table 
5. We were unable to obtain any data points for two 
configurations, which are marked N/A. For most 
configurations, we gathered 6 data For the remaining 
configurations (marked with an ◄) we only gathered 3 
data points.  
 
 
 
 
 



Table 5. Mean values for FT benchmark observations. 

nodes \ class S = 64x64x64 W = 128x128x32 A = 256x256x128 B = 512x256x256 C=512x512x512 

2 0.21 0.48 9.91 43.94 N/A

4 0.11 0.25 5.30 23.23 101.69 ◄

8 0.06 0.14 2.68 12.16 N/A

16 0.03 0.08 1.51 6.69 29.36 ◄

32 0.02 0.04 0.87 3.69 16.57

64 0.01 ◄ 0.02 ◄ 0.47 ◄ 1.95 ◄ 8.63 ◄
 

The time complexity of computing a 3D FFT 
using the transpose algorithm is well studied and easily 
found in many textbooks. In [24], the following 
formula is given in an analysis of the 3-D FFT 
algorithm. 

T = (N/P)log(N) + 2(sqrt(P) - 1) + 2(N/P) 
where T is the runtime, N is the problem size, and P is 
the number of processors. However, an inspection of 
the code for the FT benchmark reveals that it utilizes 
all-to-all communications within processor subgroups 
rather than the point-to-point communications used by 
the algorithm analyzed in [24]. This motivates us to 
form an alternate estimate that assumes that 
scatter/gather is being used for the implementation of 
all-to-all. Based on the analysis of CPU time given in 
[24] and the complexity of scatter/gather operations 
given in [30], we get: 

T = (N/P)log(N) + (N/P)log(N) 
In this formula, the first (N/P)log(N) represents 

the time spent on processing in the FFT algorithm. The 
second (N/P)log(N) represents the time spent on 
communication. 

We test the FT benchmark with three tests similar 
to those used for the EP benchmark: testing the 
processor scalability, problem-size scalability, and 
finally both together. 

As with EP, we test processor scalability by 
providing a subset of the observations and predicting 
the observations not provided in that column. This time 
we perform three tests for each problem size. In the 
first test, we provide all but the 64 processor 
observations, in the second, we provide all but the 32 
and 64 processor observations, and in the third we 
provide all but the 16, 32 and 64 processor 
observations. We perform these tests for Class A and 
Class B, as they are the only full columns which have a 
significant number of observations with runtime 

greater than one second. The results are summarized in 
Table 6 and Table 7. 

As shown in Table 6, our scalability model yields 
fairly accurate point estimates for 16 and 32 
processors, with all below 12% deviation from the 
mean of the observations. The point estimates for 64 
processors seem quite poor, with deviations between 
29% and 43% from the mean of the observations. This 
might be explained by the extremely small (less than a 
second) runtime values for the 64 node case. In all 
cases the mean of the observations falls within the 95% 
prediction interval, and two cases fall within the 95% 
confidence interval. 

The scalability tests for Class B are slightly worse 
than Class A. However, the 16 processor case in the 
right column, and the 32 processor case in the center 
column are fairly accurate predictions, both with point 
estimates less than 15% from the mean of observations, 
and both with 95% prediction intervals that accurately 
predict the location of the mean of observations. As 
with Class A, some of the higher deviations of 64 
processor predictions may be explained by the small 
size of the mean of observations. 

 
 
 
 
 

 
 
 
 
 
 

 



Table 6. Results of processor scalability prediction of the 64, 32-64, and 16-64 node cases of Class A of the FT 
benchmark. 

nodes \ class A=256x256x128  A=256x256x128 A=256x256x128 

          2  9.91  9.91 9.91 

4 5.30  5.30 5.30 

8 2.68  2.68 2.68 

1.57 +/- 0.1 (0.25) 16 1.51  1.51 
+ 4.20% 

0.94 +/- 0.06 (0.21) 0.97 +/- 0.11 (0.25) 32 0.87  

+ 8.25% + 11.71% 

0.61 +/- 0.05 (0.19)  0.64 +/- 0.07 (0.21) 0.67 +/- 0.11 (0.26) 64 
 +29.79%  + 36.17% + 42.55% 

 

Table 7. Results of processor scalability prediction of the 64, 32-64, and 16-64 node cases of Class B of the FT 
benchmark. 

nodes \ class  B=512x256x256  B=512x256x256 B=512x256x256 

2 43.94  43.94 43.94 

4 23.23  23.23 23.23 

8 12.16  12.16 12.16 

7.09 +/- 0.21 (0.56) 16 6.69  6.69  
+ 6.06% 

4.22 +/- 0.17 (0.56) 4.45 +/- 0.23 (0.56) 32 3.69  

+ 14.52%

 

+ 20.76% 

2.68 +/- 0.16 (0.64)  2.89 +/- 0.18 (0.56) 3.13 +/- 0.25 (0.57) 64 
+ 37.20%  + 47.95% + 60.24% 

. 
Table 8 shows the results of our problem-size 

scalability tests for the FT benchmark. Due to the small 
runtimes of all of the observations for Class S, these 
observations were excluded from the tests. The 
observations for Class W were included despite their 
small runtimes to provide us with enough data points to 
get meaningful predictions. We performed four tests, 
separately modeling 2, 16, 32, and 64 processors, and 
predicting  Class C  from  the observations of  Class W,  
 
 

 
A, and B. The point-estimates are very close to the 
mean of the observed values, all less than 4%. 
However, the means of the observed values do not fall 
into any of the 95% confidence or prediction intervals. 
This is likely due to the small number of configurations 
used to build the model. When very few observations 
are used to build a model, the model can easily pass 
very close to all provided observations, and based on 
this predicts tight confidence and prediction intervals. 
 

 
 
 



Table 8. Results of the problem-size scalability prediction of the C problem size for the FT benchmark. 

nodes \ class W=128x128x32 A=256x256x128 B=512x256x256 C=512x512x512 

100.47 +/- 0.12 (0.13) 4 0.25 5.30 23.23 
- 1.20% 

28.91 +/- 0.30 (0.33) 16 0.08 1.51 6.69 
- 1.54% 

15.91 +/- 0.13 (0.14) 32 0.04 0.87 3.69 
- 4.00% 

8.43 +/- 0.09 (0.09) 64 0.02 0.47 1.95 
-2.36% 

 
Table 9. Results of problem-size/processor scalability predictions for the FT benchmark. In the upper table, 
the 64 processor case of Class B, and the 16-64 processor cases of Class C are predicted. In the lower table, 
the 32-64 processor cases of Class B and the 16-64 processor cases of Class C are predicted. 

nodes \ class A=256x256x128 B=512x256x256 C=512x512x512 

2 9.91 43.94

4 5.30 23.23

8 2.68 12.16

24.22 +/- 0.21 (1.13)16 1.51 6.69 
- 17.52%

12.42 +/- 0.15 (1.12)32  3.69 

- 25.06%

1.99 +/- 0.19 (1.13) 6.52 +/- 0.16 (1.12)64  
+ 1.88 % - 24.48%

 

nodes \ class A=256x256x128 B=512x256x256 C=512x512x512 

2 9.91 43.94

4 5.30 23.23

8 2.68 12.16

24.20 +/- 0.22 (1.17)16 1.51 6.69 

- 17.58 %

3.29 +/- 0.21 (1.17) 12.38 +/- 0.17 (1.17)32  
- 10.72% - 25.30%

1.92 +/- 0.22 (1.17) 6.46 +/- 0.19 (1.17)64  

- 1.71% - 25.17%



As with the EP benchmark, we tested our system 
with the task of modeling both problem size and 
number of processors simultaneously for the FT 
benchmark. The very small runtimes of many of the 
observations for the FT benchmark made this difficult, 
and limited the number of useful observations that we 
could use. Including only observations greater than one 
second, we tested two configurations, with results 
shown in Table 9.  In the first configuration, we 
provided observations from Class A and Class B for 2, 
4, 8, and 16 processors, and 2, 4, 8, 16, and 32 
processors respectively. We then predicted Class B 
with 64 processors, and Class C with 16, 32, and 64 
processors. In the second configuration, we provided 
observations from Class A and Class B for 2, 4, 8, and 
16 processors, and predicted Class B with 32 and 64 
processors and Class C with 16, 32, and 64 processors. 
In both tests, the predictions for Class C deviate from 
the mean of observations by between 17% and 25%, 
with the 95% confidence and prediction intervals 
failing to capture the mean of observations. The 
predictions for Class B are better, with point estimates 
less than 11% from the mean of observations, and all of 
the prediction intervals (and most of the confidence 
intervals) accurately capturing the mean of 
observations. In the second test, the mean of 
observations for Class B with 32 processors falls 
outside of the 95% confidence interval, but only by 

0.19 seconds. A possible explanation for the poorer 
predictions for Class C is the relative size of the Class 
C problem size as compared to the problem sizes of 
Class A and Class B. When making predictions for 
Class C, we are predicting for a problem size that is 
very far from the provided observations (4 times larger 
than Class B and 8 times larger than Class A). 

Since the formula used for the FT benchmark 
provides us with a breakdown of the complexity into 
communication time and processing time, and the FT 
benchmark allows us to measure the time spent on 
various tasks, we can take a closer look at why some of 
our predictions for FT are inaccurate. Furthermore, this 
differentiation gives us a chance to demonstrate the 
capability of our system to predict different resource 
characteristics separately. 

By taking a closer look at the algorithm, we find 
that the entire algorithm is made up of setup time and a 
number of iterations in which an FFT is performed and 
between which, the data is evolved. The FFT time 
consists of CPU (FFTcpu) and communication time 
(FFTcomm). We notice that two terms (setup time and 
evolve time) were not considered in the original model 
but have significant effect on the total runtime. 
Motivated by this, we also model these additional 
terms (SetupTime and EvolveTime).  

T = SetupTime + EvolveTime + FFTcpu + 
FTcomm

 

Table 10. Mean values for the FT benchmark observations, broken down into Setup, Evolve, FFTcpu, and 
FFTcomm time for Class B. 

nodes \ class Total Setup Time Evolve Time FFTcpu FFTcomm % fft comm

2 43.87 1.27 2.23 33.68 6.58 16.34%

4 23.27 0.63 1.13 16.80 4.67 21.74%

8 12.19 0.32 0.56 8.35 2.95 26.10%

16 6.78 0.16 0.29 3.96 2.32 36.89%

32 3.72 0.08 0.13 1.96 1.48 42.98%

64 1.95 0.04 0.07 0.97 0.85 46.62%

 
Table 10  shows the breakdown of the runtimes 

for the B problem size, according to the four cost 
components described above. Furthermore, the 
percentage of communication in relation to the overall 
runtime is given. Unlike our other FT tests, in these 
tests we only use three observations for each 
configuration to calculate the mean of observations and 
to input into the system for prediction. 

We model SetupTime and EvolveTime both as 
N/P (obvious from the observations). The original 
CPU-time model becomes FFTcpu = (N/P)log(N). The 

model for communication remains the same and is now 
explicitly described in FFTcomm = (N/P)log(N). 

Table 11 shows two tests in which models are 
generated and predictions are made for all terms 
separately. In the first tests, we provide observations 
for 2, 4, 8, 16, and 32 processors and predict the 64 
processor values. In the second test, we provide 
observations for 2, 4, 8, and 16 processors and predict 
the 32 and 64 processor cases. We see that FFTcpu is 
modeled fairly accurately, with point predictions less 
than 11% from the mean of observations. However, 



FFTcomm is quite poor, with deviations of 44% to 
134% off the mean of observations. The Total Runtime 
prediction is simply the sum of the predictions of the 
individual components. These predictions are about the 
same as the predictions of the total runtime presented 
in Table 7. The results indicate that the inaccuracy of 
our predictions is due to an inaccurate communication 
model – which is critical, considering that the 
communication amounts to up to about 47%. It is well 
known that different algorithms may be chosen for the 
implementation of collective operations. For instance, 
the all-to-all which dominates in FT can be 

implemented using scatter/gather, pairwise-exchange, 
or a linear algorithm [31] [32]. Without knowing which 
algorithms are employed by the MPI library in use, the 
model cannot properly capture communication 
behavior. As a future extension, such information could 
be made available for all applications per collective 
operation in the dynamic directory. Another possible 
explanation is the small size of the communication 
observations for 32 and 64 processors. In a further test, 
we provided 2, 4, and 8 processors and predicted 16, 
32, and 64 processors. The 16 processor prediction was 
fairly accurate (11.21% off the mean of observations). 

  

Table 11. Results of the problem-size scalability prediction for Class B (512x256x256) of the FT benchmark, 
broken down into Setup, Evolve, FFTcpu, and FFTcomm time.  In the upper table, we provide observations 
from 2-32 processors and predict the 64 processor case. In the lower table, we provide observations from 2-16 
processors, and predict the 32 and 64 processor cases. 

nodes \ class Total Runtime Setup Time Evolve Time FFTcpu FFTcomm % fft comm 

2 43.87 1.27 2.23 33.68 6.58 16.34%

4 23.27 0.63 1.13 16.80 4.67 21.74%

8 12.19 0.32 0.56 8.35 2.95 26.10%

16 6.78 0.16 0.29 3.96 2.32 36.89%

32 3.72 0.08 0.13 1.96 1.48 42.98%

2.71 +/- 0.34 
(0.97) 

0.04 +/- 
0.00 (0.01)

0.07 +/- 
0.01 (0.02)

0.88 +/- 
0.06 (0.18)

1.72 +/- 
0.27 (0.76) 

64 

 + 38.74% 0.00% 0.00% - 9.59% + 102.35% 

46.62% 

 
nodes \ class Total Runtime Setup Time Evolve Time FFTcpu FFTcomm % fft comm 

2 43.87 1.27 2.23 33.68 6.58 16.34%

4 23.27 0.63 1.13 16.80 4.67 21.74%

8 12.19 0.32 0.56 8.35 2.95 26.10%

16 6.78 0.16 0.29 3.96 2.32 36.89%

4.30 +/- 0.35 
(0.84) 

0.08 +/- 
0.00 (0.01)

0.15 +/- 
0.01 (0.02)

1.93 +/- 
0.09 (0.21)

2.14 +/- 
0.25 (0.60) 

32 

+ 15.49% 0.00% + 15.38% - 1.70% +44.59% 

42.98% 

2.98 +/- 0.36 
(0.84) 

0.04 +/- 
0.00 (0.01)

0.08 +/- 
0.01 (0.02)

0.87 +/- 
0.09 (0.21)

1.99 +/- 
0.26 (0.60) 

64 

+ 52.56% 0.00% + 14.29% - 10.62% +134.12% 

46.62% 

 
5.4 Linpack 

The Linpack benchmark is the standard tests of a 
supercomputer’s performance, and is used to establish 
the Top 500 list of supercomputers. The benchmark 
application generates and  then solves  a random  dense  

 
linear system using LU factorization [29]. We use the 
High-Performance Linpack (HPL) implementation of 
the Linpack benchmark provided in [29]. Unlike the FT 
benchmark, HPL can be run on any number of 
processors in a variety of configurations, and can be 



run with user-specified problem sizes. As well, HPL 
allows the user to specify several characteristics of the 
algorithm, such as whether the benchmark will use a 
binary  exchange swapping algorithm, a spread-roll 
swapping algorithm, or a hybrid of the two. The user is 
also able to specify the block size that is used by the 
algorithm.  The complexity of the benchmark is well 
studied and is provided in [32]. Dropping the constant 
terms which do not make a difference in our system, 
the formula is as shown below: 

T = N 3 / 3PQ + N 2(3P+Q)/(2PQ) +N log(P) + NP 

where T is the runtime, N is the size of one side of the 
square matrix constituting the problem size, and P and 
Q describe the arrangement of processors in a P by Q 
grid. Thus PQ gives the total number of processors 
used.  

The benchmark was run on square configurations 
(P = Q) of nodes varying from 2x2 to 8x8, and with N 
varying from 8000 to 14000 in increments of 1000. 
Each configuration was run three times and in all cases 
we used the binary exchange swapping algorithm, and 
a block size of 64. The mean values of the observations 
are shown in Table 12.  

 

Table 12. Mean values for the Linpack observations. 

node \ size 80002 90002 100002 110002 120002 130002 140002 

2x2 174.07 255.81 365.05 492.14 661.67 857.91 1066.88 
3x3 69.12 104.54 148.43 201.67 264.84 344.20 436.65 
4x4 32.37 49.69 74.84 105.76 140.54 183.68 233.86 
5x5 20.38 29.72 42.49 59.68 81.12 111.18 145.49 
6x6 14.30 20.48 27.31 38.11 51.30 68.43 90.51 
7x7 11.50 15.10 20.76 29.13 38.36 46.98 59.28 
8x8 8.63 11.75 15.76 20.50 27.16 34.47 43.87 

 
Table 13. Processor-scalability tests for the Linpack benchmark. 

node 
\ size 

80002  90002  100002  110002  120002  130002  140002 

2x2 174.07  255.81  365.05  492.14  661.67  857.91  1066.88 
3x3 69.12  104.54  148.43  201.67  264.84  344.20  436.65 
4x4 32.37  49.69  74.84  105.76  140.54  183.68  233.86 
5x5 20.38  29.72  42.49  59.68  81.12  111.18  145.49 
6x6 14.30  20.48  27.31  38.11  51.30  68.43  90.51 
7x7 11.50  15.10  20.76  29.13  38.36  46.98  59.28 

7.20 +/- 
2.19 (2.43) 

 8.57 +/- 
1.75 (1.94) 

 19.49 +/- 
1.40 (1.55) 

 31.17 +/-
13.16 (14.55) 

 39.64 +/- 
3.00 (3.33) 

 36.85 +/- 
6.16 (6.82) 

 35.60 +/- 
8.05 (8.91) 

8x8 

-16.56%  -27.10%  + 23.70%  + 52.02%  + 45.96%  + 6.90%  - 18.85% 
 

 
As with the EP and FT benchmarks, we test 

processor-scalability, problem-size scalability, and 
both processor and problem-size scalability 
simultaneously. 

To test processor-scalability, we ran seven tests, 
one for each problem size. In each test, the problem 
size was kept constant and the processor configuration 
was varied. The observations for 2x2, 3x3, 4x4, 5x5, 
6x6, and 7x7 processor configurations was provided, 
and 8x8 was predicted. The results are shown in Table 
13. 

The quality of the predictions varies between the 
different problem sizes, with point estimates from 
6.90% to 52.02% from the mean of the corresponding 
observations. A possible explanation for the poor 
predictions is the small number of provided 
observations for a relatively complex formula. Multiple 
linear regression works best with large numbers of 
observations, and relatively simple formulas, with few 
coefficients to calculate. In this case, we have a 
formula with five coefficients to calculate (one in front 
of each term in the formula, and one constant term at 



the end) and observations for six distinct processor 
configurations. The EP and FT benchmarks only have 
only two coefficients to calculate, though they also 
have few distinct configurations.  

To test problem-size scalability we ran six 
separate tests. In each test, the processor configuration 
was kept constant, and the problem size was varied. 
The observations for 80002 to 120002 were provided, 

and 130002 and 140002 were predicted. The results are 
shown in Table 14. In all of the tests, the predictions 
are quite accurate, with all point estimates less than 9% 
from the mean of observations, and in all but two 
predictions, with the mean of observations falling 
within both the 95% confidence and prediction 
intervals. 

 

Table 14. Problem-size scalability tests for the Linpack benchmark. 

node \ size 80002 90002 100002 110002 120002 130002 140002 

870.83 +/- 23.26 
(24.66) 

1130.51 +/- 65.55 
(66.06)

2x2 174.07 255.81 365.05 492.14 661.67

+ 1.51% +5.96% 

338.75 +/- 1.92 
(2.04) 

424.11 +/- 5.41 
(5.46)

3x3 69.12 104.54 148.43 201.67 264.84

-1.58% -2.87% 

177.14 +/- 2.58 
(2.74) 

213.59 +/- 7.28 
(7.34)

4x4 32.37 49.69 74.84 105.76 140.54

-3.56% -8.67% 

107.58 +/- 4.00 
(4.24) 

139.34 +/- 11.28 
(11.36)

5x5 20.38 29.72 42.49 59.68 81.12

-3.24% -4.23% 

69.2 +/- 2.86 
(3.03) 

92.20 +/- 8.05 
(8.11)

6x6 14.30 20.48 27.31 38.11 51.30

+1.13% +1.87% 

48.59 +/- 3.57 
(3.78) 

58.99 +/- 10.05 
(10.13)

7x7 11.50 15.10 20.76 29.13 38.36

+3.43% -0.49% 

35.83 +/- 2.13 
(2.26) 

47.18 +/- 6.00 
(6.05)

8x8 8.63 11.75 15.76 20.50 27.16

+3.96% +7.56% 
 

Next, we test processor and problem-size 
scalability at the same time. In this test, we provide the 
observations for problem sizes 80002 to 130002, and 
processor configurations 2x2 to 7x7, and we predict the 
140002 problem size for all processor configurations, 
and the 8x8 processor configuration for all problem 
sizes. The results are shown in Table 15. As with the 
separate processor and problem-size tests above, the 
model predicts problem-size more accurately than 
processor-size. However, it is interesting how the 
processor-size predictions are improved considerably 
when both are modeled simultaneously. 

In our final set of tests, we test our system with 
the task of modeling three parameters (N, P, and Q) of 
Linpack simultaneously, demonstrating the capability 

of our multiple linear regression approach. That is, we 
are modeling all three parameters from the complexity 
estimate above. For these tests, we gathered 
observations on our local 16 node cluster for N ranging 
from 3000 to 9000, for all possible configuration of 16 
processors (1x16, 2x8, 4x4, 8x2, and 16x1). The mean 
values for the observations are shown in Table 16.  

 As a first test, we provide all observations except 
those for the 60002 problem size and 4x4 processor 
configuration, and then predict the excluded row and 
column. The results are shown in Table 17. The results 
are very good, with all of the point estimates less than 
6% from the mean of observations, and the 95% 
prediction interval accurately capturing the mean of 
observation.



Table 15. Problem-size/processor scalability test for the Linpack benchmark. 

node \ size 80002 90002 100002 110002 120002 130002 140002 

1084.47 
+/- 3.61 

(6.13)

2x2 174.07 255.81 365.05 492.14 661.67 857.91 

+1.65%
443.60 +/- 
1.35 (5.14)

3x3 69.12 104.54 148.43 201.67 264.84 344.20 

+1.59%
231.75 +/- 
1.36 (5.14)

4x4 32.37 49.69 74.84 105.76 140.54 183.68 

-0.90%
138.66 +/- 
1.26 (5.11)

5x5 20.38 29.72 42.49 59.68 81.12 111.18 

-4.70%
90.12 +/- 

1.29 (5.12)
6x6 14.30 20.48 27.31 38.11 51.30 68.43 

-0.42%
61.56 +/- 

1.77 (5.26)
7x7 11.50 15.10 20.76 29.13 38.36 46.98 

+3.84%
6.88 +/- 

1.44 (5.16) 
9.77 +/- 

1.49 (5.18) 
13.68 +/- 

1.62 (5.21) 
18.78 +/- 

1.81 (5.28) 
25.25 +/- 

2.06 (5.37) 
33.28 +/- 

2.36 (5.49) 
43.03 +/- 

2.69 (5.64)
8x8 

-20.36% -16.89% -13.22% -8.41% -7.01% -3.46% -1.90%

 

Table 16. Mean values for observations of problem sizes 30002 to 90002 run on 16 nodes in various 
configurations. 

config \ 
size 

30002 40002 50002 60002 70002 80002 90002 

1x16 2.95 5.93 10.41 16.66 25.22 36.22 50.15 
2x8 2.49 5.22 9.45 15.37 23.42 33.59 46.71 
4x4 2.50 5.14 9.26 14.96 22.74 32.87 45.57 
8x2 2.95 5.95 10.42 16.60 24.84 35.48 48.81 

16x1 4.23 8.09 13.68 21.08 31.01 43.51 58.97 

 
Our second set of tests is somewhat more 

challenging, predicting the 16x1 processor 
configuration, and the 90002 problem size. The 
challenge comes from the 16x1 problem size, which 
shows significantly different runtimes from the other 
processor-configurations. The results are shown in  

 
Table 18. The predictions are quite accurate, this time 
with all point estimates less than 4% from the mean 
of the observations, and nearly all of the means of 
observations within the 95% confidence and 
prediction intervals (the exceptions being 4x4 90002 
and 8x2 90002). 

 

 

 

 



Table 17. Problem-size/processor-configuration test for the Linpack benchmark, predicting 60002 problem 
size, and 4x4 processor-configuration.  

config 
\ size 

30002 40002 50002 60002 70002 80002 90002 

16.7 +/- 0.15 
(0.72)

1x16 2.95 5.93 10.41

+ 0.21%

25.22 36.22 50.15 

14.96 +/- 0.11 
(0.71)

2x8 2.49 5.22 9.45

-2.63%

23.42 33.59 46.71 

2.62 +/- 0.13 
(0.71) 

4.97 +/- 
0.14 (0.71) 

8.84 +/- 
0.15 (0.71) 

14.57 +/- 0.15 
(0.71) 

22.51 +/- 
0.16 (0.72) 

33.01 +/- 
0.19 (0.72) 

46.42 +/- 
0.27 (0.75)

4x4 

+ 5.09% -3.22% -4.53% -2.63% -1.01% + 0.43% + 1.87%
16.05 +/- 0.15 

(0.71)
8x2 2.95 5.95 10.42

-3.32%

24.84 35.48 48.81 

20.85 +/- 0.18 
(0.72)

16x1 4.23 8.09 13.68

-1.09%

31.01 43.51 58.97 

 
Table 18. Problem-size/processor-configuration test for the Linpack benchmark, predicting the 90002 
problem size, and 16x1 processor-configuration. 

config \ 
size 

30002 40002 50002 60002 70002 80002 90002 

49.88 +/- 0.32 
(0.65)

1x16 2.95 5.93 10.41 16.66 25.22 36.22 

-0.52%
46.88 +/- 0.44 

(0.71)
2x8 2.49 5.22 9.45 15.37 23.42 33.59 

+ 0.36%
46.75 +/- 0.33 

(0.66)
4x4 2.50 5.14 9.26 14.96 22.74 32.87 

+2.59%
50.18 +/- 0.27 

(0.63)
8x2 2.95 5.95 10.42 16.60 24.84 35.48 

+ 2.81%
4.29 +/- 

0.74 (0.93) 
7.84 +/- 

0.79 (0.97) 
13.21 +/- 

0.80 (0.98) 
20.74 +/- 

0.78 (0.96) 
30.75 +/- 

0.78 (0.97) 
43.61 +/- 

0.83 (1.01) 
59.64 +/- 0.95 

(1.10)
16x1 

6  Summary and Conclusion 
We have presented an approach to employ both 

complexity estimates from the user and historical 
information from previous runs to make scalable 
predictions in the processor-number dimension 
(processor scalability), problem-size dimension 
(problem-size scalability), and processor- 

 
number/problem-size dimensions simultaneously. The 
solution applied is multiple linear regression which not 
only provides predictions of mean values but also 
confidence and prediction intervals. The user provides 
rough complexity estimates and the coefficients are 
determined by the predictor. 



In our tests on the NAS EP and FT benchmarks, 
and the Linpack benchmark we have demonstrated that 
this approach is capable of making reliable predictions 
if the complexity estimate / model provided by the user 
are decently accurate. This requirement can create 
problems when communication libraries are utilized, as 
they may employ different algorithms, or even switch 
between algorithms depending on different parameters 
of the communication operations. The former problem 
can be addressed by documenting the complexity of the 
communication algorithms implemented in popular 
libraries, and possibly making this information 
available for automatic retrieval. Another difficulty can 
be that problem-sizes and the number of nodes used 
often grow exponentially, as observed in the FT 
benchmark. This leads to the prediction of data points 
far away from the set of observations. 

We have also demonstrated that different 
characteristics such as computation and communication 
time can be considered and predicted separately, which 
is useful for coscheduling in a time-sharing 
environment.  

Future work includes automatic checking of 
whether the assumptions regarding the error term hold 
and rejecting or modifying a model for which they are 
not met. A more advanced extension would be to 
experiment with automatically correcting inaccurate 
models by tear-down and build-up approaches of the 
function. That such approaches are feasible has been 
shown in [33]. How feasible it is for a user to provide 
the necessary models requires further exploration, as 
does the possibility of replacing or supplementing user 
estimates with compiler-derived models. The required 
models could also potentially be generated in a fully 
automated manner [34]. 
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