

ScoPred—Scalable User-Directed Performance Prediction
Using Complexity Modeling and Historical Data

Benjamin J. Lafreniere and Angela C. Sodan

University of Windsor, Computer Science

Abstract

Using historical information to predict future runs
of parallel jobs has shown to be valuable in job
scheduling. Trends toward more flexible job-
scheduling techniques such as adaptive resource
allocation, and toward the expansion of scheduling to
grids, make runtime predictions even more important.
We present a technique of employing both a user’s
knowledge of his/her parallel application and historical
application-run data, synthesizing them to derive
accurate and scalable predictions for future runs. These
scalable predictions apply to runtime characteristics for
different numbers of nodes (processor scalability) and
different problem sizes (problem-size scalability). We
employ multiple linear regression and show that for
decently accurate complexity models, good prediction
accuracy can be obtained.

1 Introduction
The typical approach in parallel job scheduling is

that users provide estimates about the runtimes of their
jobs with such estimates being, in the general case,
much higher than the actual runtime (ranging from
20% [12] to 16 times [11] higher in different studies
for different supercomputing centers). The availability
of more accurate information about runtimes of parallel
programs has been shown to be valuable to improve
average response times. However, results also exist
suggesting that the overestimation of runtimes provides
some benefits by creating holes in the schedule that can
be filled with short jobs [10]. Thus, the need for
accurate estimates in standard job scheduling is not yet
fully decided. However, in the context of grid
scheduling for simultaneous execution of jobs on
multiple sites, reservations of resources on remote sites
is required and prediction is unequivocally relevant.
The simplest approach to obtain accurate estimates is
recording runtimes of previous job executions and
using them to predict future runtimes with the same job
configuration and the same number of resources. For
grid computing, more detailed runtime information
may be needed to estimate performance on different

systems. Furthermore, grid middleware may be
composed of different components, and a more detailed
recording of these components (and their performance
for certain applications and machines) are needed to
support optimal configuration of grid jobs [16].

To make matters more complicated, modern job
scheduling employs advanced approaches such as
flexible time sharing and adaptive resource allocation
[6]. Flexible time sharing means relaxing global
synchronous gang scheduling if jobs can be matched
well [8][4] or could mean abandoning global control
altogether [14]. In both cases the aim is improving
resource utilization. Adaptive resource allocation
means that the number of nodes allocated to a job
changes during its runtime, typically driven by the
changing workload of the machine [7][2]. Time sharing
makes it necessary to know more detailed application
characteristics such as the fractions of total runtime
spent on communication and I/O, to allow us to find
proper matches and estimate slowdowns. For adaptive
resource allocation, it becomes relevant to estimate
runtime on different numbers of resources; if we can
predict resource times with different numbers of nodes,
we can better predict the benefits of certain adaptation
decisions. This leads to the challenge of generating
scalable predictions, i.e. predicting resource times with
allocations other than those previously measured. Such
scalable prediction is also useful if the user moves to
larger problem sizes for which no performance data is
available yet.

Several approaches exist which utilize special
compilers to provide performance models of
applications. A difficulty of this approach is that
abstract models may not always be extractable in a
fully automated manner, particularly if the code
behavior is complex. As well, runtime measurements
or simulations are typically needed for quantification of
the parameters. Our target is a standard job-execution
environment running primarily MPI based applications,
and not equipped with any such special compilers.
However, we assume that users have some rough
knowledge of their applications and know, for
example, which parameters in their application

determine runtime. Furthermore, users may be able to
provide rough cost estimations (closely resembling the
steps needed to derive complexity estimates) as
suggested in [15]. Whether estimated formulas for
performance models are provided by the user or
extracted by a special compiler, the system must then
perform quantification of coefficients within the
formula, to turn the rough estimate into a concrete
model for the system being used. This challenge
motivates the following goals for our ScoPred
performance predictor:

 Support prediction of overall execution times as
well as prediction of resource times (computation,
communication, I/O)

 Support such prediction on the same and on
different numbers of nodes (scaling the
prediction)

 Assume that a rough model is available as input
such as via cost/complexity estimations from the
user (user-directed) or a formula provided by the
compiler (compiler-directed) and leave all
quantification (determination of coefficients) to
the system

 Provide a practically feasible approach
 Provide a mathematically sound approach

In our ScoPred approach, we apply the following
innovative solutions toward meeting these goals:

 Take the performance-determining parameters
and a rough resource-usage model as input

 Employ multiple linear regression to determine
the coefficients and provide mean values,
confidence intervals, and prediction intervals

2 Related Work
Performance data bases or repositories were first

proposed in [9], Due to a lack of models describing the
application behavior, measurements such as runtime or
memory usage were used to interpolate the runtime of
future runs from previous measurements, i.e. no scaling
was applied. The approach is extended in [13] to
consider a number of additional criteria such as the
application parameters. The difficulty addressed by
considering the different criteria is to associate the
runtimes with a particular application and the correct
instance of that application. This can become difficult
as a single user may run the same application with
different parameters and under different names [9][13].

Furthermore, to estimate the cost under varying
resource allocation, a proper cost model needs to
consider the fact that speedup curves are not linear but
that the curve typically flattens (and finally declines) if
more resources are allocated. In [5], a general
statistical model is proposed which is useful for
studying general adaptation benefits in simulation
studies. This, however, does not help us to find an

application’s specific cost model. The Grads project
[17] employs performance models created by the
compiler to predict performance and monitors whether
these predictions are met. The approach in [19]
considers floating-point operations and accesses to the
memory hierarchy to predict performance on different
architectures, while focusing on the memory accesses.
Memory accesses are extracted via a simulator, and
application characteristics are convolved with machine
characteristics. In [18], a prediction model for different
architectures is described which extracts the program
structure by static analysis of the program binary, after
which execution profiling is used to obtain dependence
on parameters such as execution frequency for vertexes
in the program graph and reuse distances for memory
locations. Linear regression is applied, but only used
for the memory-access cost, and the approach currently
only considers single-CPU performance. Scalability is
not considered.

The most closely related approach is presented in
[15]. This approach takes cost/complexity estimations
as input, while differentiating explicitly different
sources of overhead such as communication, load
imbalance, or synchronization loss. Coefficients are
then obtained from actual program runs.

Both [18] and [15], consider linear combinations
of cost terms. In [15], either additive or multiplicative
combinations are possible, the latter describing
interaction between cost terms. Predictions are
compared to actual runtimes, with the average relative
error found for 2D FFT to be only 12.5%, whereas
simple linear interpolation (without interactions)
resulted into an error of 750%. The approach considers
different parameters and employs a least-squares
method but does not provide confidence or prediction
intervals.

3 The Prediction System
3.1 Overall Framework

The ScoPred performance predictor is embedded
into a job-scheduling and job-control framework as
shown in Figure 1. Several tools interact via an
integrated design. The Dynamic Directory stores
information about the current job execution, including
user-provided estimates, and retrieves information
about previous runs from a performance repository.
The ScoPro monitor [1] provides information about the
characteristics of jobs such as the fraction of
computation, communication, and I/O time as well as
slowdowns under coscheduling. Furthermore, it can
monitor progress on heterogeneous resources. ScoPro
employs dynamic instrumentation and can, for loosely
synchronous applications, extract behavior from a few
iterations. The adaptation controller interacts with the

application, determining potentially new workload
targets per node and initiating the adaptation. In [3], we
have presented an approach to perform such adaptation

via overpartitioning or partitioning from scratch in
either the time or space dimension.

Figure 1. Overall integrated framework for job scheduling and job control. Solid arrows indicate invocations
and a labeled with the corresponding function.

3.2 Application Model
We apply the view that application performance

is dominated by certain data structures or computations
that depend on a few critical parameters, such as the
size of an array. Often these parameters determine the
problem size of the application and changing the
parameters changes the problem size. Then, it would be
possible to model application performance by
modeling the dependence of the cost on these
parameters. In many cases, an application’s user is
aware of which application parameters are critical, as
the user may explicitly want to change them to switch
to a different problem size. In this case, the user should
be able to specify which these parameters are.

Typically such parameters appear as input to the
application but they may also be statically compiled
into the code. We assume in the following that the
values of the critical parameters are specified with the
submission of the job (it would not be difficult to build
a corresponding programming environment that makes
such submissions straightforward). Furthermore, we

assume that a unique identification is attached to the
application (the name is not necessarily sufficient and
may be different for program versions compiled for
different numbers of nodes). We do not make any
efforts to automatically match jobs as done in [9][13],
but instead focus on the prediction aspect.

We assume that the user, in addition to the
specification of the critical parameters, also provides a
rough cost estimate describing the qualitative/structural
relationship (without the quantification of system
dependent coefficients). Such estimates could be close
to the estimations represented by mathematically
derived algorithmic complexity estimates. Importantly,
complexity-oriented estimations would focus on the
complexity of the model expressed in various terms
such as T = 2 M3 + log(N) + log(N) * M with T being
the runtime, M being the size of one dimension in a
matrix, and N being the number of nodes. Let us
assume that the first term specifies computation cost in
terms of computation steps and the second and third
term specify communication cost in terms of sizes and
numbers of messages. Note that the coefficients from

Job Scheduler

Dynamic Directory

Adaptation
controller

ScoPro Monitor

Performance
Repository

ScoPred
Performance
Predictor

CreateJobEntry
StoreUserEstim

PredictJobBehavior

GetJobResourceAllocation

Start/RestartMonitoring

Jobs on Machine

RecordJobMonitorData

RetrieveJobInfos
Store/UpdatePrediction

Store/RetrieveLongTermJobInfos

the replication in iteration steps as well as the
computation time per step, message startup cost and
transfer cost are omitted. These are the coefficients to
be determined by the predictor. We assume that the
estimate takes the form of a linear combination of
different cost terms. However, as will be explained
below, variables may be multiplied within the terms.

The idea is to specify a rough cost formula which
only reflects critical, i.e. dominating performance
influences. The system should provide the possibility
to add an automatic correction to approximate missing
cost terms which are not crucial but also not negligible
if high prediction accuracy is to be obtained. What is
exactly to be modeled depends on the application and
on the desirable range of prediction. Thus, if a small
problem size fits into the cache and a larger one does
not, and this significantly influences performance, the
memory access cost in dependence to the parameters
should be modeled. Similarly, if load imbalance could
become an issue, this should also be modeled, etc. Note
that an alternative to the user providing specifications
is the compiler providing them. In this case, the derived
formulas may be more detailed though the compiler
might require monitoring / runtime feedback or a
simulator to prune irrelevant details and extract the
relevant formulas.

Our current prediction system works for a
particular machine, i.e. we do not include any machine
model and prediction facilities across machines.

3.3 Architecture and Functionality
In the following, we describe the details of the

predictor functionality. The ScoPred predictor takes as
input:

 Specifications of the critical parameters and the
estimation formulas depending on them

 The actual values of the critical parameters for the
current job submission

 Information about previous runs of the same
application (parameters values and performance
of the job run)
Note that the number of nodes on which the

application is run is typically one of the critical
parameters (unless the application always runs with the
same number of nodes).

The values predicted may be:
 Runtime of the whole job
 Differentiated time consumed on different

resources such as computation time (CPU),
communication time (network), and I/O time
(disk).
The latter requires that the monitor provides the

actual times for the different program execution
components from previous runs to match them against

the prediction. Providing cost estimations for different
resources is typically not a problem for the user
because these different aspects need to be considered
(as far as applicable) to obtain an estimation of the
runtime function for the whole job.

The goal of the estimation may be to predict
1. Future runtimes with the same parameter

values
2. Future runtimes with different problem sizes

(one or several of the parameters other than
the number of nodes)

3. Future runtimes with a smaller or higher
degree of parallelism (smaller or larger
number of nodes)

4. Combinations of different problem sizes and a
different degree of parallelism

Option 3 can be applied if resources are allocated
adaptively (as for malleable or moldable applications),
and is thus of particular interest. Option 4 is a typical
case, as for production runs (runs other than tests for
speedup graphs with varying numbers of nodes) there
is typically a correlation between problem size and
number of nodes, i.e. larger problem sizes require a
larger number of nodes and vice versa. Note that this
option is always at least a two-variable prediction,
whereas the others potentially predict a single variable
only. Options 2, 3, and 4 require the scalability features
of our predictor.

The prediction system provides point estimates of
the mean of values, and associated confidence and
prediction intervals.

4 Multiple Linear Regression and Its
Application in ScoPred

4.1 Overview of Multiple Linear
Regression

Linear regression, also known as linear least
squares regression, is a widely used mathematical
modeling technique [20]. Given a data set and an
appropriate function, least squares regression
determines the values for coefficients within the
function that produce an equation which best fits the
data set. Simple linear regression applies to equations
with a single dependent variable, and a single
independent variable. Multiple linear regression applies
to equations with a single dependent variable and
multiple independent variables.

In order to be appropriate for linear regression,
the supplied function must be linear in the parameters
[21]. This is satisfied if and only if the function is of
the form [20]:

f x :B = B0 + B1x1 + B2x2 + ... + Bkxk (1)

where:
 Each independent variable (x1, x2, ..., xk) in the

function is multiplied by an unknown coefficient
(B1, B2, ..., Bk).

 There is at most one unknown coefficient with no
corresponding independent variable (B0).

 The individual terms are summed to produce a
final function value.
The independent variables may be the product of

several application parameters, and particular
application parameters may be components of more
than one independent variable, though no two
independent variable may be exactly the same. For
instance,

 yi = B0 + B1 sqrt(x) + B2 x2 + B3 xz + B4 z (2)

is a valid function.
Given a function which satisfies the above

conditions, we can relate the function to the data set by
adding an error component, ε:

 f x : B = B0+B1x1 + B2x2 +...+ Bkxk+ ε (3)
In all but perfect models, the value of ε will vary

for each observation. The total set of ε values is
referred to as the error component, or set of residuals.
Three assumptions must hold regarding error
component [22].

The set of values of ε must:
 Be independent, in the probabilistic sense (the

value of a particular ε value should be unrelated
to the other values of ε, except insofar as they
satisfy these conditions)

 Have a mean of 0 and a common variance
 Have a normal probability distribution

Given a suitable function and data set, we can
calculate the values for the coefficients such that the
sum of the squares of the residual values is minimized.
That is, we choose B0, B1, ... Bk such that

SSE
i 1

k

yi y i
2

is minimized, where yi refers to the ith observed

response value, and ŷi refers to the value of (1) with the
ith observations of all dependent variables.

To find values for the coefficients which
minimize SSE, partial differentials of (1) are taken with
respect to each unknown coefficient. The resulting set
of partial differential equations is then solved as a
system of linear equations. For further details, refer to
[21][20].

4.2 Statistical Tests and Metrics
There are several ways of evaluating how well a

calculated regression equation fits the data. Two

commonly used measures of a fit's significance are the
coefficient of determination, and the analysis of
variance F-test [22].

The coefficient of determination (often called R2
or multiple R2) [22] expresses the proportion of the
variance that is explained by the regression model.
Informally, this is a measure of how much better the
model is at expressing the relationship, as compared to
simply using the mean of the response data. An R2
value of 0 indicates that the mean of the response data
is a better predictor of the response, whereas an R2
value of 1.0 indicates that the response fits the curve
perfectly, explaining away 100% of the deviation from
the mean in each response value. For convenience, we
consider any value less than 0 to be equivalent to 0,
and this allows us to interpret the coefficient of
determination as a percentage. A value related to the
coefficient of determination is the adjusted R2, or
shrunken R2. As the number of independent variables
in a regression formula rises, the R2 value becomes
artificially inflated. To compensate for this effect, the
adjusted R2 value takes into account the number of
independent variables [22].

Another way of testing whether a regression
model is significant is through a statistical test. For any
given configuration of coefficient values we can test
whether the data supports that configuration at a given
confidence level. If the regression model is significant,
then at least one of the independent variables is
contributing significant information for the prediction
of the response variable [22]. To prove this, we attempt
to reject the contrapositive statement that no
independent variable contributes any information for
the prediction of the response. This is referred to as the
null hypothesis, and we attempt to reject it with 95%
confidence. If successful, we have shown with 95%
confidence that at least one of the independent
variables is contributing significant information for the
prediction of the response variable. That is, the
regression model is significant.

4.3 Using a Regression Model for
Prediction

Once the regression model is generated and we
have verified that the model effectively describes the
relationship between the predictor variables and the
response, the model can be used to predict the response
for given values of the independent variables. These
predictions take the form of a point estimate which is a
prediction of the mean function value for a certain
parameter-value combination. In addition, the
confidence interval (typically 95%) is provided,
describing the probability with which the mean value
of future observations for this parameter-value
combination falls into the corresponding interval.

Furthermore, a prediction interval is provided which
describes the probability that future observed function
values fall into the corresponding interval. Note that
both the confidence and the prediction interval become
wider as the parameter-value combinations are further
away from the means of the observed values of the
independent variables used to build the regression
model, i.e. the prediction becomes less reliable.

4.4 Multiple Linear Regression in Parallel
Performance Prediction

Given the above explanations, we can now
explain how a scalable model of an application can be
built through a straightforward application of linear
regression. Given an application that we wish to model,
we proceed as follows. To start, the static (static
variables) or dynamic parameters (arguments of the
program invocation) of an application, which are
specified to influence the application’s characteristics,
are considered as components of the independent
variables of our model. Similarly, application
characteristics that we wish to construct a model of
(runtime, I/O time, etc) are considered as the response
variables. By storing the parameters with which
application runs are submitted, and the corresponding
observations of the characteristic under study, we build
a data set of our independent and response variables.

At this point we have a data set, but we still need
a function to fit to the data. As described above, the
function is supplied by the user (or by a compiler) as an
estimation formula (see Section 3.2,) of the relation
between the characteristic under study and the
application parameters. However, it is still lacking a
quantification of the coefficients. Coefficients (that
unknown at this point) are automatically added into the
equation by our system in a manner that ensures the
resulting equation is linear in the parameters. Once we
have added the unknown coefficients, we have an
equation of the form described in Section 4.1. We can
now use linear regression to determine the
quantification by calculating values for the coefficient
variables that best fit the equation to the data, giving us
a model of the application.

By substituting in the parameters, the model can
be used to predict the performance of the characteristic
under study for a future run of the application. We use
statistical measures such as the coefficient of
determination, R2 and the analysis of variance F-test to
determine how successful the regression model fits the
data, and to calculate confidence intervals for our
predictions.

Since fitting the function values into a regression
model always involves some inaccuracy regarding the
individual values for certain parameter-value
combinations (points), employing the prediction from

the model for points with available observations is not
very meaningful. We can gain better predictions by
only considering the different historical values for
exactly the corresponding point. The main benefit from
the regression model comes from predicting
performance for new parameter-value combinations.

4.5 Implementation
We have used Java to write the overall interface

for our performance predictor. This interface handles
the interaction with the job scheduler and the dynamic
directory in regards to storage of new or modified
application profiles and retrieval of existing profiles.
All statistical calculations are performed through calls
to the Waterloo Maple symbolic algebra system [27]
using custom functions programmed in Maple's native
language. To allow the Java components access to the
Maple components, we used the OpenMaple API for
Java [28], which allows us to call code in a running
Maple environment from external Java programs. The
calls to the Maple environment to calculate a model, or
make a prediction based on an existing model take in
the order of a second, which is acceptable in a job-
scheduling environment for parallel machines.

5 Experimental Evaluation
5.1 Experimental Setup

To evaluate our system, we have chosen the
Linpack benchmark [29] and two applications from the
NAS Parallel Benchmarks Version 2.4 [23]. The
selected NAS benchmarks are the EP embarrassingly
parallel benchmark, and the FT 3D Fast Fourier
transformation benchmark.

Some of the tests were run on a local 16 node
Debian GNU/Linux cluster running Linux kernel 2.6.6.
Each node of this cluster is equipped with 2 Intel Xeon
2.0Ghz processors, of which our tests only use one.
Other tests requiring more than 16 nodes were run on
64 nodes of a Redhat GNU/Linux cluster running
Linux kernel 2.6.8.1. Each node of this cluster is
equipped with 2 Intel Opteron/244 1.8Ghz processors,
of which our tests only use one. Each cluster uses a
Myrinet network for application-level communication,
using MPIch version 1.2.6 over GM.

Each benchmark was run for varying problem
sizes and different numbers of nodes (NAS provides a
number of different categories: S, W, A, B, etc. which
have increasing problem sizes, and Linpack allows
problem sizes and node configurations to be specified).
For each configuration of problem size/nodes, each
benchmark was run 3 times, unless specified otherwise.
For the subset of gathered data selected for each test,
we feed all data into our predictor but for the sake of
clarity only show the mean values in the tables below.

After providing a subset of the gathered data to our
predictor, predictions are made for the excluded
problem size/nodes configurations.

We test the following cases:
 Processor Scalability: Prediction towards larger

number of nodes given data for a smaller number
of nodes (malleability test or test for user
choosing new number of nodes)

 Problem-size Scalability: Prediction towards
larger problem sizes given data for smaller
problem sizes (user switching to larger problem
size)

 Problem-size/Processor Scalability: Prediction
towards larger problem sizes and larger number
of processors given data from situations with data
for smaller numbers of nodes/problem size (user
switching to larger problem size on larger number
of nodes)
Whenever possible, we omit observations with

runtimes of less than one second and in some of our
experiments below this limits the number of
experiments we can perform on the gathered data sets.

5.2 EP
The EP benchmark represents the simplest of

parallel programs. Communication occurs only twice:
once when the job begins, sending a segment of the
total work to each of the nodes; and once right before
the job terminates, collecting back the results of each

node's calculations. The lack of communication time
makes this benchmark very simple to model, and we
use it as a demonstration of our technique.

We ran the EP benchmark on the local 16 node
cluster, varying the number of nodes from 2 to 16 in
increments of 2. The mean values of the three gathered
observations for each configuration are shown in Table
1.

Before this data can be entered into our system,
we must provide an estimate of how the benchmark's
runtime varies with its parameters. To do so, we
consider the benchmark's algorithm. The EP
benchmark accepts two parameters, the number of
nodes (P), and the problem size (N). Each node is
assigned the task of generating (N/P) pairs of Gaussian
random deviates according to a specific scheme, and
tabulates the number of pairs in successive annuli [23].
Since the time to generate a pair of random numbers is
relatively constant, we estimate that the runtime (T) of
a particular job will be given by:

T = N / P
This estimate is entered into our system. As the

first step toward turning this estimate into a detailed
model, the system adds unknown coefficients into the
equation, giving us:

T = B1 (N / P) + B0

where B1 and B0 represent the unknown constants
added by our system.

Table 1. Mean values for EP benchmark observations.

nodes \ class S = 224 W = 225 A = 228 B = 230

2 2.10 4.19 33.60 138.24

4 1.09 2.10 16.81 67.28

6 0.72 1.46 11.26 44.82

8 0.54 1.09 8.40 34.86

10 0.43 0.87 6.74 29.03

12 0.36 0.71 5.62 22.47

14 0.31 0.62 5.17 20.11

16 0.28 0.56 4.36 17.38

.
In the first experiment, we test our system for

processor scalability, using data from the A and B
columns. Table 2 shows the results of using our system
to model either the A or B column, i.e. the table shows
the result of two separate sets of processor-scalability
predictions. In each column, a subset of the
observations is input into the system (shown in light
grey). The cells highlighted in darker grey are the

predictions of our system given the input data for that
column. For each value we provide a point estimate,
followed by the 95% confidence interval, and the 95%
prediction interval (in parenthesis). Below the point
estimate and confidence/prediction intervals is the
percentage that the estimate deviates from the mean of
the observations.

For the A column test outlined in Table 2, the
system assigns a value of 1/3996971.35 for B1 and a
value of 0.025 for B0, giving the model:

T = (N / 3996971.35 P) + 0.025

For the B column, the values of B0 and B1 are similar,
giving us the model:

T = (N / 3906469.72 P) + 0.085
We observe in Table 2 that our predictions tend to

be a bit low, though all predictions are well within a
10% deviation from the mean of the observations.
While our predictions for Class A come very close, the

mean of the observations does not fall within the 95%
confidence or prediction intervals for the 14 and 16
node predictions. For Class B, the mean of the
observations is within both the 95% confidence and
prediction intervals for all predictions. This does not
necessarily indicate that the predictions for Class B are
better as we observe that the confidence and prediction
intervals for Class B are considerably wider. This is
likely due to greater variation observed between data
points of the same configuration for Class B.

Table 2. Results of processor-scalability predictions for 12, 14, and 16 node cases in the EP benchmark.

nodes \ class A = 228 B = 230

2 33.60 138.24

4 16.81 67.28

6 11.26 44.82

8 8.40 34.86

10 6.74 29.03

5.62 +/- 0.03 (0.08) 22.99 +/- 2.77 (8.09)12
- 0.06% + 2.31%

4.82 +/- 0.03 (0.08) 19.72 +/- 2.89 (8.13)14

- 6.71% - 1.96%

4.22 +/- 0.03 (0.08) 17.26 +/- 2.98 (8.16)16

- 3.21% - 0.73%

Table 3. Results of problem-size scalability prediction of the B problem size for the EP benchmark.
nodes \ class S = 224 W = 225 A = 228 B = 230

134.43 +/- 0.18 (0.19) 2 2.10 4.19 33.60
- 2.76%

67.17 +/- 0.27 (0.29) 4 1.09 2.10 16.81
- 0.17%

44.92 +/- 0.34 (0.36) 6 0.72 1.45 11.26
+ 0.22%

33.49 +/- 0.28 (0.30) 8 0.55 1.09 8.40
- 3.94%

In our second experiment, we test our system with
the task of problem-size scalability, modeling the 2, 4,
6, and 8-processor rows respectively. We provide the
data for problem sizes S, W, and A for each processor
row, and use the generated model to predict problem
size B for that row. The results are shown in Table 3.

We see that our predictions are very good, with
all predictions less than 5% from the mean of the actual
observations. Also, in all but the 2 processor case, the
mean of the actual observation is within the 95%
confidence and prediction intervals.

In our final experiment for the EP benchmark, our
system is tested with the task of modeling both
problem size and number of processors simultaneously.
We provide the system with columns S, W, and A and
rows 2, 4, 6, 8, and 10, and use the generated model to
predict A on 12, 14, and16 processors, and B on 8, 10,
12, 14, and 16 processors. The results are shown in
Table 4.

The multivariate model created by entering
observations varying in both number of nodes and

problem-size is almost as successful as the models of
one or the other alone. All values are within 6% of the
observed mean, and none of the observed means falls
outside of the 95% prediction interval (only one falls
outside the 95% confidence interval).

Finally, we want to note that the R2 values for
these predictions are close to 1 and that the F tests are
passed at a greater than 95% confidence level in all
cases.

Table 4. Results of problem-size/processor scalability predictions for the EP benchmark.

nodes \ class S = 224 W = 225 A = 228 B = 230

2 2.10 4.19 33.60

4 1.09 16.81

6 0.72 1.45 11.26

34.39 +/- 0.61 (3.95)8 0.55 1.09 8.40
- 1.36 %

27.51 +/- 0.59 (3.95)10 0.43 0.87 6.74

- 5.23 %

5.73 +/- 0.63 (3.95) 22.93 +/- 0.58 (3.94)12
+ 1.90 % + 2.05 %

4.91 +/- 0.64 (3.95) 19.65 +/- 0.58 (3.94)14

- 4.97 % - 2.30 %

4.29 +/- 0.64 (3.95) 17.19 +/- 0.59 (3.94)16

- 1.61 % - 1.13 %

5.3 FT

The FT benchmark solves a partial differential
equation (PDE) using a 3-D Fast Fourier Transform
(FFT) [23]. The 3-D FFT is solved using a standard
transpose algorithm. Due to the nature of the algorithm,
it can only be run on a power-of-two number of nodes.
The FT benchmark is more complex to model than the
EP benchmark, as there is extensive communication
throughout the application run.

The algorithm employs a 3-dimensional array
which determines the problem size. Though the size
of the FFT array is set for each class of benchmark, the
user may vary the number of iterations performed

for each class. We have set all tests to 6 iterations to
make the runs with different problem sizes comparable.
In each iteration, a 3-D FFT is performed, and the
resulting data set is evolved before being used as the
input for the next iteration.

The FT benchmark was run for 2, 4, 8, 16, 32 and
64 nodes with problem sizes varying from Class S
(64x64x64) to Class C (512x512x512). The mean
values of the application runs are summarized in Table
5. We were unable to obtain any data points for two
configurations, which are marked N/A. For most
configurations, we gathered 6 data For the remaining
configurations (marked with an ◄) we only gathered 3
data points.

Table 5. Mean values for FT benchmark observations.

nodes \ class S = 64x64x64 W = 128x128x32 A = 256x256x128 B = 512x256x256 C=512x512x512

2 0.21 0.48 9.91 43.94 N/A

4 0.11 0.25 5.30 23.23 101.69 ◄

8 0.06 0.14 2.68 12.16 N/A

16 0.03 0.08 1.51 6.69 29.36 ◄

32 0.02 0.04 0.87 3.69 16.57

64 0.01 ◄ 0.02 ◄ 0.47 ◄ 1.95 ◄ 8.63 ◄

The time complexity of computing a 3D FFT
using the transpose algorithm is well studied and easily
found in many textbooks. In [24], the following
formula is given in an analysis of the 3-D FFT
algorithm.

T = (N/P)log(N) + 2(sqrt(P) - 1) + 2(N/P)
where T is the runtime, N is the problem size, and P is
the number of processors. However, an inspection of
the code for the FT benchmark reveals that it utilizes
all-to-all communications within processor subgroups
rather than the point-to-point communications used by
the algorithm analyzed in [24]. This motivates us to
form an alternate estimate that assumes that
scatter/gather is being used for the implementation of
all-to-all. Based on the analysis of CPU time given in
[24] and the complexity of scatter/gather operations
given in [30], we get:

T = (N/P)log(N) + (N/P)log(N)
In this formula, the first (N/P)log(N) represents

the time spent on processing in the FFT algorithm. The
second (N/P)log(N) represents the time spent on
communication.

We test the FT benchmark with three tests similar
to those used for the EP benchmark: testing the
processor scalability, problem-size scalability, and
finally both together.

As with EP, we test processor scalability by
providing a subset of the observations and predicting
the observations not provided in that column. This time
we perform three tests for each problem size. In the
first test, we provide all but the 64 processor
observations, in the second, we provide all but the 32
and 64 processor observations, and in the third we
provide all but the 16, 32 and 64 processor
observations. We perform these tests for Class A and
Class B, as they are the only full columns which have a
significant number of observations with runtime

greater than one second. The results are summarized in
Table 6 and Table 7.

As shown in Table 6, our scalability model yields
fairly accurate point estimates for 16 and 32
processors, with all below 12% deviation from the
mean of the observations. The point estimates for 64
processors seem quite poor, with deviations between
29% and 43% from the mean of the observations. This
might be explained by the extremely small (less than a
second) runtime values for the 64 node case. In all
cases the mean of the observations falls within the 95%
prediction interval, and two cases fall within the 95%
confidence interval.

The scalability tests for Class B are slightly worse
than Class A. However, the 16 processor case in the
right column, and the 32 processor case in the center
column are fairly accurate predictions, both with point
estimates less than 15% from the mean of observations,
and both with 95% prediction intervals that accurately
predict the location of the mean of observations. As
with Class A, some of the higher deviations of 64
processor predictions may be explained by the small
size of the mean of observations.

Table 6. Results of processor scalability prediction of the 64, 32-64, and 16-64 node cases of Class A of the FT
benchmark.

nodes \ class A=256x256x128 A=256x256x128 A=256x256x128

 2 9.91 9.91 9.91

4 5.30 5.30 5.30

8 2.68 2.68 2.68

1.57 +/- 0.1 (0.25) 16 1.51 1.51
+ 4.20%

0.94 +/- 0.06 (0.21) 0.97 +/- 0.11 (0.25) 32 0.87

+ 8.25% + 11.71%

0.61 +/- 0.05 (0.19) 0.64 +/- 0.07 (0.21) 0.67 +/- 0.11 (0.26) 64
 +29.79% + 36.17% + 42.55%

Table 7. Results of processor scalability prediction of the 64, 32-64, and 16-64 node cases of Class B of the FT
benchmark.

nodes \ class B=512x256x256 B=512x256x256 B=512x256x256

2 43.94 43.94 43.94

4 23.23 23.23 23.23

8 12.16 12.16 12.16

7.09 +/- 0.21 (0.56) 16 6.69 6.69
+ 6.06%

4.22 +/- 0.17 (0.56) 4.45 +/- 0.23 (0.56) 32 3.69

+ 14.52%

+ 20.76%

2.68 +/- 0.16 (0.64) 2.89 +/- 0.18 (0.56) 3.13 +/- 0.25 (0.57) 64
+ 37.20% + 47.95% + 60.24%

.
Table 8 shows the results of our problem-size

scalability tests for the FT benchmark. Due to the small
runtimes of all of the observations for Class S, these
observations were excluded from the tests. The
observations for Class W were included despite their
small runtimes to provide us with enough data points to
get meaningful predictions. We performed four tests,
separately modeling 2, 16, 32, and 64 processors, and
predicting Class C from the observations of Class W,

A, and B. The point-estimates are very close to the
mean of the observed values, all less than 4%.
However, the means of the observed values do not fall
into any of the 95% confidence or prediction intervals.
This is likely due to the small number of configurations
used to build the model. When very few observations
are used to build a model, the model can easily pass
very close to all provided observations, and based on
this predicts tight confidence and prediction intervals.

Table 8. Results of the problem-size scalability prediction of the C problem size for the FT benchmark.

nodes \ class W=128x128x32 A=256x256x128 B=512x256x256 C=512x512x512

100.47 +/- 0.12 (0.13) 4 0.25 5.30 23.23
- 1.20%

28.91 +/- 0.30 (0.33) 16 0.08 1.51 6.69
- 1.54%

15.91 +/- 0.13 (0.14) 32 0.04 0.87 3.69
- 4.00%

8.43 +/- 0.09 (0.09) 64 0.02 0.47 1.95
-2.36%

Table 9. Results of problem-size/processor scalability predictions for the FT benchmark. In the upper table,
the 64 processor case of Class B, and the 16-64 processor cases of Class C are predicted. In the lower table,
the 32-64 processor cases of Class B and the 16-64 processor cases of Class C are predicted.

nodes \ class A=256x256x128 B=512x256x256 C=512x512x512

2 9.91 43.94

4 5.30 23.23

8 2.68 12.16

24.22 +/- 0.21 (1.13)16 1.51 6.69
- 17.52%

12.42 +/- 0.15 (1.12)32 3.69

- 25.06%

1.99 +/- 0.19 (1.13) 6.52 +/- 0.16 (1.12)64
+ 1.88 % - 24.48%

nodes \ class A=256x256x128 B=512x256x256 C=512x512x512

2 9.91 43.94

4 5.30 23.23

8 2.68 12.16

24.20 +/- 0.22 (1.17)16 1.51 6.69

- 17.58 %

3.29 +/- 0.21 (1.17) 12.38 +/- 0.17 (1.17)32
- 10.72% - 25.30%

1.92 +/- 0.22 (1.17) 6.46 +/- 0.19 (1.17)64

- 1.71% - 25.17%

As with the EP benchmark, we tested our system
with the task of modeling both problem size and
number of processors simultaneously for the FT
benchmark. The very small runtimes of many of the
observations for the FT benchmark made this difficult,
and limited the number of useful observations that we
could use. Including only observations greater than one
second, we tested two configurations, with results
shown in Table 9. In the first configuration, we
provided observations from Class A and Class B for 2,
4, 8, and 16 processors, and 2, 4, 8, 16, and 32
processors respectively. We then predicted Class B
with 64 processors, and Class C with 16, 32, and 64
processors. In the second configuration, we provided
observations from Class A and Class B for 2, 4, 8, and
16 processors, and predicted Class B with 32 and 64
processors and Class C with 16, 32, and 64 processors.
In both tests, the predictions for Class C deviate from
the mean of observations by between 17% and 25%,
with the 95% confidence and prediction intervals
failing to capture the mean of observations. The
predictions for Class B are better, with point estimates
less than 11% from the mean of observations, and all of
the prediction intervals (and most of the confidence
intervals) accurately capturing the mean of
observations. In the second test, the mean of
observations for Class B with 32 processors falls
outside of the 95% confidence interval, but only by

0.19 seconds. A possible explanation for the poorer
predictions for Class C is the relative size of the Class
C problem size as compared to the problem sizes of
Class A and Class B. When making predictions for
Class C, we are predicting for a problem size that is
very far from the provided observations (4 times larger
than Class B and 8 times larger than Class A).

Since the formula used for the FT benchmark
provides us with a breakdown of the complexity into
communication time and processing time, and the FT
benchmark allows us to measure the time spent on
various tasks, we can take a closer look at why some of
our predictions for FT are inaccurate. Furthermore, this
differentiation gives us a chance to demonstrate the
capability of our system to predict different resource
characteristics separately.

By taking a closer look at the algorithm, we find
that the entire algorithm is made up of setup time and a
number of iterations in which an FFT is performed and
between which, the data is evolved. The FFT time
consists of CPU (FFTcpu) and communication time
(FFTcomm). We notice that two terms (setup time and
evolve time) were not considered in the original model
but have significant effect on the total runtime.
Motivated by this, we also model these additional
terms (SetupTime and EvolveTime).

T = SetupTime + EvolveTime + FFTcpu +
FTcomm

Table 10. Mean values for the FT benchmark observations, broken down into Setup, Evolve, FFTcpu, and
FFTcomm time for Class B.

nodes \ class Total Setup Time Evolve Time FFTcpu FFTcomm % fft comm

2 43.87 1.27 2.23 33.68 6.58 16.34%

4 23.27 0.63 1.13 16.80 4.67 21.74%

8 12.19 0.32 0.56 8.35 2.95 26.10%

16 6.78 0.16 0.29 3.96 2.32 36.89%

32 3.72 0.08 0.13 1.96 1.48 42.98%

64 1.95 0.04 0.07 0.97 0.85 46.62%

Table 10 shows the breakdown of the runtimes

for the B problem size, according to the four cost
components described above. Furthermore, the
percentage of communication in relation to the overall
runtime is given. Unlike our other FT tests, in these
tests we only use three observations for each
configuration to calculate the mean of observations and
to input into the system for prediction.

We model SetupTime and EvolveTime both as
N/P (obvious from the observations). The original
CPU-time model becomes FFTcpu = (N/P)log(N). The

model for communication remains the same and is now
explicitly described in FFTcomm = (N/P)log(N).

Table 11 shows two tests in which models are
generated and predictions are made for all terms
separately. In the first tests, we provide observations
for 2, 4, 8, 16, and 32 processors and predict the 64
processor values. In the second test, we provide
observations for 2, 4, 8, and 16 processors and predict
the 32 and 64 processor cases. We see that FFTcpu is
modeled fairly accurately, with point predictions less
than 11% from the mean of observations. However,

FFTcomm is quite poor, with deviations of 44% to
134% off the mean of observations. The Total Runtime
prediction is simply the sum of the predictions of the
individual components. These predictions are about the
same as the predictions of the total runtime presented
in Table 7. The results indicate that the inaccuracy of
our predictions is due to an inaccurate communication
model – which is critical, considering that the
communication amounts to up to about 47%. It is well
known that different algorithms may be chosen for the
implementation of collective operations. For instance,
the all-to-all which dominates in FT can be

implemented using scatter/gather, pairwise-exchange,
or a linear algorithm [31] [32]. Without knowing which
algorithms are employed by the MPI library in use, the
model cannot properly capture communication
behavior. As a future extension, such information could
be made available for all applications per collective
operation in the dynamic directory. Another possible
explanation is the small size of the communication
observations for 32 and 64 processors. In a further test,
we provided 2, 4, and 8 processors and predicted 16,
32, and 64 processors. The 16 processor prediction was
fairly accurate (11.21% off the mean of observations).

Table 11. Results of the problem-size scalability prediction for Class B (512x256x256) of the FT benchmark,
broken down into Setup, Evolve, FFTcpu, and FFTcomm time. In the upper table, we provide observations
from 2-32 processors and predict the 64 processor case. In the lower table, we provide observations from 2-16
processors, and predict the 32 and 64 processor cases.

nodes \ class Total Runtime Setup Time Evolve Time FFTcpu FFTcomm % fft comm

2 43.87 1.27 2.23 33.68 6.58 16.34%

4 23.27 0.63 1.13 16.80 4.67 21.74%

8 12.19 0.32 0.56 8.35 2.95 26.10%

16 6.78 0.16 0.29 3.96 2.32 36.89%

32 3.72 0.08 0.13 1.96 1.48 42.98%

2.71 +/- 0.34
(0.97)

0.04 +/-
0.00 (0.01)

0.07 +/-
0.01 (0.02)

0.88 +/-
0.06 (0.18)

1.72 +/-
0.27 (0.76)

64

 + 38.74% 0.00% 0.00% - 9.59% + 102.35%

46.62%

nodes \ class Total Runtime Setup Time Evolve Time FFTcpu FFTcomm % fft comm

2 43.87 1.27 2.23 33.68 6.58 16.34%

4 23.27 0.63 1.13 16.80 4.67 21.74%

8 12.19 0.32 0.56 8.35 2.95 26.10%

16 6.78 0.16 0.29 3.96 2.32 36.89%

4.30 +/- 0.35
(0.84)

0.08 +/-
0.00 (0.01)

0.15 +/-
0.01 (0.02)

1.93 +/-
0.09 (0.21)

2.14 +/-
0.25 (0.60)

32

+ 15.49% 0.00% + 15.38% - 1.70% +44.59%

42.98%

2.98 +/- 0.36
(0.84)

0.04 +/-
0.00 (0.01)

0.08 +/-
0.01 (0.02)

0.87 +/-
0.09 (0.21)

1.99 +/-
0.26 (0.60)

64

+ 52.56% 0.00% + 14.29% - 10.62% +134.12%

46.62%

5.4 Linpack

The Linpack benchmark is the standard tests of a
supercomputer’s performance, and is used to establish
the Top 500 list of supercomputers. The benchmark
application generates and then solves a random dense

linear system using LU factorization [29]. We use the
High-Performance Linpack (HPL) implementation of
the Linpack benchmark provided in [29]. Unlike the FT
benchmark, HPL can be run on any number of
processors in a variety of configurations, and can be

run with user-specified problem sizes. As well, HPL
allows the user to specify several characteristics of the
algorithm, such as whether the benchmark will use a
binary exchange swapping algorithm, a spread-roll
swapping algorithm, or a hybrid of the two. The user is
also able to specify the block size that is used by the
algorithm. The complexity of the benchmark is well
studied and is provided in [32]. Dropping the constant
terms which do not make a difference in our system,
the formula is as shown below:

T = N 3 / 3PQ + N 2(3P+Q)/(2PQ) +N log(P) + NP

where T is the runtime, N is the size of one side of the
square matrix constituting the problem size, and P and
Q describe the arrangement of processors in a P by Q
grid. Thus PQ gives the total number of processors
used.

The benchmark was run on square configurations
(P = Q) of nodes varying from 2x2 to 8x8, and with N
varying from 8000 to 14000 in increments of 1000.
Each configuration was run three times and in all cases
we used the binary exchange swapping algorithm, and
a block size of 64. The mean values of the observations
are shown in Table 12.

Table 12. Mean values for the Linpack observations.

node \ size 80002 90002 100002 110002 120002 130002 140002

2x2 174.07 255.81 365.05 492.14 661.67 857.91 1066.88
3x3 69.12 104.54 148.43 201.67 264.84 344.20 436.65
4x4 32.37 49.69 74.84 105.76 140.54 183.68 233.86
5x5 20.38 29.72 42.49 59.68 81.12 111.18 145.49
6x6 14.30 20.48 27.31 38.11 51.30 68.43 90.51
7x7 11.50 15.10 20.76 29.13 38.36 46.98 59.28
8x8 8.63 11.75 15.76 20.50 27.16 34.47 43.87

Table 13. Processor-scalability tests for the Linpack benchmark.

node
\ size

80002 90002 100002 110002 120002 130002 140002

2x2 174.07 255.81 365.05 492.14 661.67 857.91 1066.88
3x3 69.12 104.54 148.43 201.67 264.84 344.20 436.65
4x4 32.37 49.69 74.84 105.76 140.54 183.68 233.86
5x5 20.38 29.72 42.49 59.68 81.12 111.18 145.49
6x6 14.30 20.48 27.31 38.11 51.30 68.43 90.51
7x7 11.50 15.10 20.76 29.13 38.36 46.98 59.28

7.20 +/-
2.19 (2.43)

 8.57 +/-
1.75 (1.94)

 19.49 +/-
1.40 (1.55)

 31.17 +/-
13.16 (14.55)

 39.64 +/-
3.00 (3.33)

 36.85 +/-
6.16 (6.82)

 35.60 +/-
8.05 (8.91)

8x8

-16.56% -27.10% + 23.70% + 52.02% + 45.96% + 6.90% - 18.85%

As with the EP and FT benchmarks, we test

processor-scalability, problem-size scalability, and
both processor and problem-size scalability
simultaneously.

To test processor-scalability, we ran seven tests,
one for each problem size. In each test, the problem
size was kept constant and the processor configuration
was varied. The observations for 2x2, 3x3, 4x4, 5x5,
6x6, and 7x7 processor configurations was provided,
and 8x8 was predicted. The results are shown in Table
13.

The quality of the predictions varies between the
different problem sizes, with point estimates from
6.90% to 52.02% from the mean of the corresponding
observations. A possible explanation for the poor
predictions is the small number of provided
observations for a relatively complex formula. Multiple
linear regression works best with large numbers of
observations, and relatively simple formulas, with few
coefficients to calculate. In this case, we have a
formula with five coefficients to calculate (one in front
of each term in the formula, and one constant term at

the end) and observations for six distinct processor
configurations. The EP and FT benchmarks only have
only two coefficients to calculate, though they also
have few distinct configurations.

To test problem-size scalability we ran six
separate tests. In each test, the processor configuration
was kept constant, and the problem size was varied.
The observations for 80002 to 120002 were provided,

and 130002 and 140002 were predicted. The results are
shown in Table 14. In all of the tests, the predictions
are quite accurate, with all point estimates less than 9%
from the mean of observations, and in all but two
predictions, with the mean of observations falling
within both the 95% confidence and prediction
intervals.

Table 14. Problem-size scalability tests for the Linpack benchmark.

node \ size 80002 90002 100002 110002 120002 130002 140002

870.83 +/- 23.26
(24.66)

1130.51 +/- 65.55
(66.06)

2x2 174.07 255.81 365.05 492.14 661.67

+ 1.51% +5.96%

338.75 +/- 1.92
(2.04)

424.11 +/- 5.41
(5.46)

3x3 69.12 104.54 148.43 201.67 264.84

-1.58% -2.87%

177.14 +/- 2.58
(2.74)

213.59 +/- 7.28
(7.34)

4x4 32.37 49.69 74.84 105.76 140.54

-3.56% -8.67%

107.58 +/- 4.00
(4.24)

139.34 +/- 11.28
(11.36)

5x5 20.38 29.72 42.49 59.68 81.12

-3.24% -4.23%

69.2 +/- 2.86
(3.03)

92.20 +/- 8.05
(8.11)

6x6 14.30 20.48 27.31 38.11 51.30

+1.13% +1.87%

48.59 +/- 3.57
(3.78)

58.99 +/- 10.05
(10.13)

7x7 11.50 15.10 20.76 29.13 38.36

+3.43% -0.49%

35.83 +/- 2.13
(2.26)

47.18 +/- 6.00
(6.05)

8x8 8.63 11.75 15.76 20.50 27.16

+3.96% +7.56%

Next, we test processor and problem-size
scalability at the same time. In this test, we provide the
observations for problem sizes 80002 to 130002, and
processor configurations 2x2 to 7x7, and we predict the
140002 problem size for all processor configurations,
and the 8x8 processor configuration for all problem
sizes. The results are shown in Table 15. As with the
separate processor and problem-size tests above, the
model predicts problem-size more accurately than
processor-size. However, it is interesting how the
processor-size predictions are improved considerably
when both are modeled simultaneously.

In our final set of tests, we test our system with
the task of modeling three parameters (N, P, and Q) of
Linpack simultaneously, demonstrating the capability

of our multiple linear regression approach. That is, we
are modeling all three parameters from the complexity
estimate above. For these tests, we gathered
observations on our local 16 node cluster for N ranging
from 3000 to 9000, for all possible configuration of 16
processors (1x16, 2x8, 4x4, 8x2, and 16x1). The mean
values for the observations are shown in Table 16.

 As a first test, we provide all observations except
those for the 60002 problem size and 4x4 processor
configuration, and then predict the excluded row and
column. The results are shown in Table 17. The results
are very good, with all of the point estimates less than
6% from the mean of observations, and the 95%
prediction interval accurately capturing the mean of
observation.

Table 15. Problem-size/processor scalability test for the Linpack benchmark.

node \ size 80002 90002 100002 110002 120002 130002 140002

1084.47
+/- 3.61

(6.13)

2x2 174.07 255.81 365.05 492.14 661.67 857.91

+1.65%
443.60 +/-
1.35 (5.14)

3x3 69.12 104.54 148.43 201.67 264.84 344.20

+1.59%
231.75 +/-
1.36 (5.14)

4x4 32.37 49.69 74.84 105.76 140.54 183.68

-0.90%
138.66 +/-
1.26 (5.11)

5x5 20.38 29.72 42.49 59.68 81.12 111.18

-4.70%
90.12 +/-

1.29 (5.12)
6x6 14.30 20.48 27.31 38.11 51.30 68.43

-0.42%
61.56 +/-

1.77 (5.26)
7x7 11.50 15.10 20.76 29.13 38.36 46.98

+3.84%
6.88 +/-

1.44 (5.16)
9.77 +/-

1.49 (5.18)
13.68 +/-

1.62 (5.21)
18.78 +/-

1.81 (5.28)
25.25 +/-

2.06 (5.37)
33.28 +/-

2.36 (5.49)
43.03 +/-

2.69 (5.64)
8x8

-20.36% -16.89% -13.22% -8.41% -7.01% -3.46% -1.90%

Table 16. Mean values for observations of problem sizes 30002 to 90002 run on 16 nodes in various
configurations.

config \
size

30002 40002 50002 60002 70002 80002 90002

1x16 2.95 5.93 10.41 16.66 25.22 36.22 50.15
2x8 2.49 5.22 9.45 15.37 23.42 33.59 46.71
4x4 2.50 5.14 9.26 14.96 22.74 32.87 45.57
8x2 2.95 5.95 10.42 16.60 24.84 35.48 48.81

16x1 4.23 8.09 13.68 21.08 31.01 43.51 58.97

Our second set of tests is somewhat more

challenging, predicting the 16x1 processor
configuration, and the 90002 problem size. The
challenge comes from the 16x1 problem size, which
shows significantly different runtimes from the other
processor-configurations. The results are shown in

Table 18. The predictions are quite accurate, this time
with all point estimates less than 4% from the mean
of the observations, and nearly all of the means of
observations within the 95% confidence and
prediction intervals (the exceptions being 4x4 90002
and 8x2 90002).

Table 17. Problem-size/processor-configuration test for the Linpack benchmark, predicting 60002 problem
size, and 4x4 processor-configuration.

config
\ size

30002 40002 50002 60002 70002 80002 90002

16.7 +/- 0.15
(0.72)

1x16 2.95 5.93 10.41

+ 0.21%

25.22 36.22 50.15

14.96 +/- 0.11
(0.71)

2x8 2.49 5.22 9.45

-2.63%

23.42 33.59 46.71

2.62 +/- 0.13
(0.71)

4.97 +/-
0.14 (0.71)

8.84 +/-
0.15 (0.71)

14.57 +/- 0.15
(0.71)

22.51 +/-
0.16 (0.72)

33.01 +/-
0.19 (0.72)

46.42 +/-
0.27 (0.75)

4x4

+ 5.09% -3.22% -4.53% -2.63% -1.01% + 0.43% + 1.87%
16.05 +/- 0.15

(0.71)
8x2 2.95 5.95 10.42

-3.32%

24.84 35.48 48.81

20.85 +/- 0.18
(0.72)

16x1 4.23 8.09 13.68

-1.09%

31.01 43.51 58.97

Table 18. Problem-size/processor-configuration test for the Linpack benchmark, predicting the 90002
problem size, and 16x1 processor-configuration.

config \
size

30002 40002 50002 60002 70002 80002 90002

49.88 +/- 0.32
(0.65)

1x16 2.95 5.93 10.41 16.66 25.22 36.22

-0.52%
46.88 +/- 0.44

(0.71)
2x8 2.49 5.22 9.45 15.37 23.42 33.59

+ 0.36%
46.75 +/- 0.33

(0.66)
4x4 2.50 5.14 9.26 14.96 22.74 32.87

+2.59%
50.18 +/- 0.27

(0.63)
8x2 2.95 5.95 10.42 16.60 24.84 35.48

+ 2.81%
4.29 +/-

0.74 (0.93)
7.84 +/-

0.79 (0.97)
13.21 +/-

0.80 (0.98)
20.74 +/-

0.78 (0.96)
30.75 +/-

0.78 (0.97)
43.61 +/-

0.83 (1.01)
59.64 +/- 0.95

(1.10)
16x1

6 Summary and Conclusion
We have presented an approach to employ both

complexity estimates from the user and historical
information from previous runs to make scalable
predictions in the processor-number dimension
(processor scalability), problem-size dimension
(problem-size scalability), and processor-

number/problem-size dimensions simultaneously. The
solution applied is multiple linear regression which not
only provides predictions of mean values but also
confidence and prediction intervals. The user provides
rough complexity estimates and the coefficients are
determined by the predictor.

In our tests on the NAS EP and FT benchmarks,
and the Linpack benchmark we have demonstrated that
this approach is capable of making reliable predictions
if the complexity estimate / model provided by the user
are decently accurate. This requirement can create
problems when communication libraries are utilized, as
they may employ different algorithms, or even switch
between algorithms depending on different parameters
of the communication operations. The former problem
can be addressed by documenting the complexity of the
communication algorithms implemented in popular
libraries, and possibly making this information
available for automatic retrieval. Another difficulty can
be that problem-sizes and the number of nodes used
often grow exponentially, as observed in the FT
benchmark. This leads to the prediction of data points
far away from the set of observations.

We have also demonstrated that different
characteristics such as computation and communication
time can be considered and predicted separately, which
is useful for coscheduling in a time-sharing
environment.

Future work includes automatic checking of
whether the assumptions regarding the error term hold
and rejecting or modifying a model for which they are
not met. A more advanced extension would be to
experiment with automatically correcting inaccurate
models by tear-down and build-up approaches of the
function. That such approaches are feasible has been
shown in [33]. How feasible it is for a user to provide
the necessary models requires further exploration, as
does the possibility of replacing or supplementing user
estimates with compiler-derived models. The required
models could also potentially be generated in a fully
automated manner [34].

Acknowledgement
This research was supported by CFI via Grant No.

6191 and partially by NSERC. We thank SHARCNET
for allowing us time on 64 nodes of their cluster at
McMaster University, and in particular Mark Hahn for
assisting us with running our tests.

References
[1] Angela C. Sodan and Lun Liu. Dynamic Multi-

Resource Monitoring for Predictive Job
Scheduling with ScoPro. Technical Report 04-
002, U of W, CS Department, February 2005.

[2] Angela C. Sodan and Xuemin Huang. Adaptive
Time/Space Scheduling with SCOJO. Int. Symp.
on High-Performance Computing Systems
(HPCS), Winnipeg/Manitoba, May 2004, pp. 165-
178.

[3] Angela C. Sodan and Lin Han. ATOP—Space and
Time Adaptation for Parallel and Grid
Applications via Flexible Data Partitioning. 3rd
ACM/IFIP/USENIX Workshop on Reflective and
Adaptive Middleware, Toronto, Oct. 2004.

[4] Angela C. Sodan and Lei Lan. LOMARC—
Lookahead Matchmaking in Multi-Resource
Coscheduling. JSSPP (Workshop on Job
Scheduling Strategies for Parallel Processing),
New York / USA, June 2004, to appear in
Springer.

[5] W. Cirne and F. Berman. A Model for Moldable
Supercomputer Jobs. Proc. Internat. Parallel and
Distributed Processing Symposium (IPDPS), April
2001.

[6] Angela C. Sodan. Loosely Coordinated
Coscheduling in the Context of Other Dynamic
Approaches for Job Scheduling—A Survey.
Concurrency&Computation:
Practice&Experience. Accepted for publication.
(57 pages).

[7] V. K. Naik, S. K. Setia, and M. S. Squillante.
Processor Allocation in Multiprogrammed
Distributed-Memory Parallel Computer Systems.
J. of Parallel and Distributed Computing, Vol. 46,
No. 1, 1997, pp. 28-47.

[8] Eitan Frachtenberg, Dror Feitelson, Fabrizio
Petrini, and Juan Fernandez. Flexible
CoScheduling: Mitigating Load Imbalance and
Improving Utilization of Heterogeneous
Resources. Proc. Int. Parallel and Distributed
Processing Symposium (IPDPS'03), Nice, France,
April 2003.

[9] R.A. Gibbons Historical Application Profiler for
Use by Parallel Schedulers. Proc. IPPS Workshop
on Job Scheduling Strategies for Parallel
Processing (JSSPP), April 1997, Lecture Notes in
Computer Science 1291, Springer Verlag.

[10] Mu'alem A and Feitelson D G. 2001. Utilization,
Predictability, Workloads and User Runtime
Estimates in Scheduling the IBM SP2 with
Backfilling. IEEE Transactions Parallel &
Distributed Systems June 2001, 12(6).

[11] Perkovic D and Keleher P J. Randomization,
Speculation, and Adaptation in Batch Schedulers.
Proc. ACM/IEEE Supercomputing (SC),
Dallas/TX, Nov. 2000.

[12] Chiang S-H and Vernon M K. Characteristics of a
Large Shared Memory Production Workload.
Proc. Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP), June 2001, Lecture
Notes in Computer Science 2221, Springer-Verlag,
pp. 159-187.

[13] Smith W, Taylor V, and Foster I. Using Run-Time
Predictions to Estimate Queue Wait Times and
Improve Scheduler Performance. Proc. Workshop

on Job Scheduling Strategies for Parallel
Processing (JSSPP), 1999, Lecture Notes in
Computer Science 1659, Springer Verlag.

[14] Arpaci-Dusseau A C, Culler D E, and Mainwaring
A M. Scheduling with Implicit Information in
Distributed Systems. Proc.
SIGMETRICS’98/PERFORMANCE’98 Joint
Conference on the Measurement and Modeling of
Computer Systems, Madison/WI, USA, June 1998.

[15] M.E. Crovella and T.J. LeBlanc. Parallel
Performance Prediction Using Lost Cycles
Analysis. Proc. Supercomputing (SC), 1994.

[16] K. Keahey, P. Beckman, and J. Ahrens. Ligature:
Component Architecture for High Performance
Applications. The International Journal of High
Performance Applications, 14(4):347-356, Winter
2000.

[17] Frederik Vraalsen, Ruth A. Aydt, Celso L.
Mendes, and Daniel A. Reed. Performance
Contracts: Predicting and Monitoring Grid
Application Behavior. In Proc. 2nd Internat.
Workshop on Grid Computing, Nov. 2001.

[18] G. Marin and J. Mellor-Crummey. Cross-
Architecture Predictions for Scientific
Applications Using Parameterized Models. Proc.
Joint. Internat. Conf. on Measurement and
Modeling of Computer Systems (SIGMETRICS),
New York, NY, USA, June 2004.

[19] A. Snavely, L. Carrington, and N. Wolter.
Modeling Application Performance by
Convolving Machine Signatures with Application
Profiles. In Proc. IEEE 3th Annual Workshop on
Workload Characterization, 2001.

[20] NIST/SEMATECH e-Handbook of Statistical
Methods, available at
http://www.itl.nist.gov/div898/handbook,
retrieved October, 2004.

[21] J. Cohen, P. Cohen, S.G. West, and L.S. Alken.
Applied Multiple Regression/Correlation Analysis
for the Behavioural Sciences, 3rd edition. Mahwah,
New Jersey, USA: Lawrence Erlbaum Associates,
2003.

[22] W. Mendenhall, R.J. Beaver, and B.M. Beaver.
Introduction to Probability and Statistics, 10th
edition. Pacific Grove, CA, USA: Brooks/Cole
Publishing Company, 1999.

[23] D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der
Wijngaart, A.C. Woo, M. Yarrow. The NAS
Parallel Benchmarks 2.0. NAS Technical Report
NAS-95-020, NASA Ames Research Center,
Moffett Field, CA, 1995.

[24] A. Grama, A. Gupta, G. Karypis, V. Kumar.
(2003) Introduction to Parallel Computing, 2nd
ed. Addison Wesley.

[25] M. Yarrow, R.F. Van der Wijngaart.
Communication Improvement for the LU NAS

Parallel Benchmark: A Model for Efficient
Parallel Relaxation Schemes. NAS Technical
Report NAS-97-032, NASA Ames Research
Center, Moffett Field, CA, 1997.

[26] E. Barszcz, R. Fatoohi, V. Venkatakrishnan, S.
Weeratunga, Solution of Regular, Sparse
Triangular Linear Systems on Vector and
Distributed-Memory Multiprocessors, NAS
Applied Research Branch Report RNR-94-007,
NASA Ames Research Center, Moffet Field, CA,
1993.

[27] Maple 9.5—Advanced Mathematics Software for
Engineers, Academics, Researchers, and Students,
http://www.maplesoft.com/products/maple/index.a
spx, retrieved December 2004.

[28] OpenMaple—An API into Maple,
http://www.adaptscience.com/
products/mathsim/maple/html/OpenMaple.html,
retrieved December 2004.

[29] HPL – A Portable Implementation of the High-
Performance Linpack Benchmark for Distributed-
Memory Computers, available at
http://www.netlib.org/benchmark/hpl/, retrieved
June, 2005.

[30] Ian Foster. Designing and Building Parallel
Programs. Reading, MA: Addison-Wesley, 1995.

[31] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra.
Automatically Tuned Collective Communications.
IEEE/ACM Supercomputing, Nov. 2000.

[32] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E.
Fagg, E. Gabriel, and J. J. Dongarra. Performance
Analysis of MPI Collective Operations. PMEO-
PDS, Apr. 2005.

[33] Ljupčo Todorowski, Peter Ljubič, and Sašo
Džeroski. Inducing Polynomial Equations for
Regression. ECML, 2004.

[34] E. Schmidt, A. Schulz, L. Kruse, G. von Cölln,
and W. Nebel. Automatic Generation of
Complexity Functions for High-Level Power
Analysis. PATMOS, 2001.

