Abstract
Chai, Cao and Lu first proposed an ID-based threshold decryption scheme without random oracles. Their approach is based on the Bilinear Diffie-Hellman Inversion assumption, and prove that it is selective chosen plaintext secure without random oracles. However, to ensure correctness of their ID-based threshold decryption scheme, it is necessary to guarantee that the shared decryption is performed correctly through some public verification function. We modify Chai et al.’s scheme to ensure that all decryption shares are consistent. We also present the first mediated ID based encryption scheme based on the Bilinear Diffie Hellman Inversion assumption without random oracles. In addition, we extend it into a mediated hierarchical ID-based encryption scheme.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-candidate election system. In: Twentieth Annual ACM Symposium on Principles of Distributed Computing, pp. 274–283 (2001)
Boneh, D., Boyen, X.: Efficient selective id secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)
Boneh, D., Boyen, X.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)
Boneh, D., Ding, X., Tsudik, G.: Fine-grained control of security capabilities. ACM Transactions on Internet Technology (TOIT) 4(1) (February 2004)
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Baek, J., Zheng, Y.: Identity-Based Threshold Decryption. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg (2004)
Chai, Z., Cao, Z., Lu, R.: ID-based Threshold Decryption without Random Oracles and its Application in Key Escrow. In: Proceedings of the 3rd international conference on Information security. ACM International Conference Proceeding Series (2004)
Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)
Libert, B., Quisquater, J.-J.: Efficient revocation and threshold pairing based cryptosystems. In: Symposium on Principles of Distributed Computing-PODC 2003 (2003)
Nali, D., Miri, A., Adams, C.: Efficient Revocation of Dynamic Security Privileges in Hierarchically Structured Communities. In: Proceedings of the 2nd Annual Conference on Privacy, Security and Trust (PST 2004), Fredericton, New Brunswick, Canada, October 13-15, pp. 219–223 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ju, H.S., Kim, D.Y., Lee, D.H., Park, H., Chun, K. (2006). Modified ID-Based Threshold Decryption and Its Application to Mediated ID-Based Encryption. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds) Frontiers of WWW Research and Development - APWeb 2006. APWeb 2006. Lecture Notes in Computer Science, vol 3841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11610113_64
Download citation
DOI: https://doi.org/10.1007/11610113_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31142-3
Online ISBN: 978-3-540-32437-9
eBook Packages: Computer ScienceComputer Science (R0)