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Abstract. This paper presents a new, simple approach for rotation and
histogram equalization invariant texture classification. The proposed ap-
proach is based on both microscopic and macroscopic information which
can effectively capture fundamental intensity properties of image tex-
tures. The combined information is proven to be a very powerful texture
feature. We extract the information at the microscopic level by using the
frequency histogram of all pattern labels. At the macroscopic level, we
extract the information by employing the circular Gabor filters at dif-
ferent center frequencies and computing the Tsallis entropy of the filter
outputs. The proposed approach is robust in terms of histogram equal-
ization since the feature is, by definition, invariant against flattening of
pixel intensities. The good performance of this approach is proven by the
promising experimental results obtained. We also evaluate our method
based on six widely used image features. It is experimentally shown that
our features exceed the performance obtained using other image features.

1 Introduction

Texture analysis plays an important role in computer vision and image process-
ing. Translation, rotation, and histogram equalization invariant texture analysis
methods have been of particular interest. Some researchers have considered to
extract rotation-invariant features for image textures. Greenspan et al. [I] ap-
plied a set of oriented pyramid filters to an image texture and obtained a set
of filtered energies. Porter and Canagarajah [2] removed the HH wavelet chan-
nels and combined the LH and HL wavelet channels to obtain rotation-invariant
wavelet features. Haley and Manjunath [3] used Gabor filters to extract rotation-
invariant features. Kashyap and Khotanzad [4] constructed an isotropic circular
Gaussian Markov random field (GMRF). To capture directional information in
the possibly non-isotropic textures, Deng and Clausi [5] extended the ICGMRF
model [4] into anisotropic circular GMRF model. Utilizing similar circular neigh-
borhoods, Arof and Deravi obtained rotation invariant features with 1D DFT
transformation [6]. Also, Ojala et al. [{] proposed rotation invariant features
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by observing statistical distributions of uniform local binary patterns (LBP).
Huang, Li and Wang extended the conventional LBP method to calculate the
derivative-based local binary patterns in the application of face alignment [g].

In this paper, we propose a new approach to histogram equalization nd
rotation invariant texture classification by capturing and combining both mi-
croscopic information: characteristics of local details in the textures, and
macroscopic information: blob-like texture pattern in the image. The main
contributions of this work are as follows. First, along the same line of Ojala et al.
[7], instead of just observing the "uniform LBP”, we propose to use frequency
histogram of all pattern labels. At the microscopic level, it is found that this can
better represent the dominant patterns in the texture images than the conven-
tional LBP method [7]. Second, we use the Gabor filters to extract macroscopic
information [10], and represent the extracted macroscopic information by com-
puting the Tsallis entropy from the histogram of the image filtered using the
circular Gabor filters because of the fact that the histogram can be transformed
into a vector of generalized image entropies [9]. Finally, we found that the mi-
croscopic and macroscopic features can complement with each other effectively.
This can lead to higher classification accuracy when the resolution of the image
is low, e.g. 16 x 16, or the textures in the images are difficult to be classified. In
this paper, we employ the support vector machines for performing classification,
and the grid search to find the best setting of parameters which can produce the
highest classification accuracy for each feature.

The performance of the proposed approach is demonstrated with three exper-
iments on three databases: Brodatz [I1], Meastex [12] and CUReT textures [13].
Excellent experimental results demonstrate that our method is able to produce,
from any random rotation angle, a representation that allows for discriminating
a large number of textures at other random angles. The features are computa-
tionally attractive as they can be extracted in just a few operations.

2 Microscopic Information

At the microscopic level, we show how to derive features based on the modified
version of local binary patterns (LBP) using frequency histogram of all pattern
labels in the images. It will be experimentally shown that, using frequency his-
togram of all pattern labels, our new features outperform the conventional LBP
and other five widely used image features (see Section [l for details). Our features
are simple, and robust to image histogram equalization and rotation.

An advantage of using frequency histogram of all pattern labels over using
the histogram of ”uniform LBP” in the conventional LBP method [7] is that,
for some kinds of textures, the dominant patterns are not mainly the ”uniform
LBP”, especially for the textures whose edges and shapes are not regular. For
example, Table [I] lists the proportions of the ”uniform LBP” in some sample
images obtained from the Meastex database. As listed in the table, even with
different values of radius R, the majority of textural information cannot be
effectively represented by merely considering the histogram of ”uniform LBP”.
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Table 1. Proportions (%) of ”uniform LBP” for some samples in the Meastex database.
It shows that, for some kinds of textures, the dominant patterns are not mainly the
”uniform LBP”.

Textures P=8 R=1 P=16,R=2 P=24,R=3

Concrete0002  52.30 38.54 24.85
Concrete0003  63.72 45.05 31.95
Concrete0006  50.15 34.94 26.70
Concrete0007  40.64 26.07 13.58
Misc0000 58.61 42.50 30.84
Misc0001 46.40 32.78 20.80
Rock0015 56.80 41.83 27.32
Rock0016 64.42 50.52 24.10
Rock0017 44.93 31.70 16.33
Rock0018 51.68 36.85 22.78

It shows that the ”"uniform LBP” are not the dominant patterns in these sample
images. Moreover, the approach of ”uniform LBP” is not very robust against
random rotation as the interpolation of pixel intensities of the rotated images
can change the original ”uniform” patterns into "non-uniform”. Instead, the
frequency histogram of all pattern labels can be more robust to random rotation
as, no matter how much the images are rotated, the new patterns appear after
the interpolation will also be considered in the frequency histogram of all pattern
labels.

Based on the work of Ojala et. al [7], we first give the definition of pat-
tern labels, and then describe how frequency histogram of all pattern labels is
used for feature selection. Let V' be a vector representing the neighboring in-
tensity values (anti-clockwise direction) at each image pixel (z,y), V(z,y) =
(to,t1,- > tm—1)T, where (x,y) denote image pixel coordinates, and ty, ta, ... ,
tm—1 represent the intensity values of m equally spaced pixels around the pixel
at (x,y). In order to maintain rotation invariance, a circular neighborhood sys-
tem is used. Therefore, t1, ta, ... , t;,—1 form a circularly symmetric neighbor set
on a circle of radius R. Fig. [ illustrates the circularly symmetric neighbor sets
for different values of m and R. The intensity values of the neighboring pixels
are estimated using the bilinear interpolation. Let ¢y be the intensity value of
a neighboring pixel, which is (R,0), to the right of the center pixel t., (0,0),
and tq, t2, ... , t;n—1 denote the intensity values in the order of anti-clockwise
from ty. To achieve histogram equalization invariance, the intensity value t.
at the center pixel is subtracted from the intensity values of the neighbor sets
t1, ta, ... , tm—_1. A vector is defined to represent the trend of each pixel to
its neighbors in the image, Trend(z,y) = (u(to — tc), u(ts — te)s- .y u(tm—1 —
te))T, where u(z) is a step function, u(z) = 1 when = > 0; else, u(z) = 0.
The vector Trend at each pixel is a highly discriminative microscopic tex-
ture feature. It is robust to histogram equalization because the sign of differ-
ence between two pixels will not be changed after performing histogram equal-
ization. Then, a binary weighted factor 2¢,i = 0,1,...,m — 1 is assigned to
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Fig. 1. Circularly symmetric neighbor sets for different values of m and R

each element in vector Trend in order to label each pattern, which is given
as,

Mic(m, R) = Zutft (1)

This feature is an effective representation of the information at the microscopic
level because its value denotes a unique label number which describes the pattern
characteristics centered at a particular pixel.

Suppose that the image is rotated by an arbitrary angle, the intensity val-
ues of t; will correspondingly move along the perimeter of the circle centered at
tc.. Therefore, rotating the image with a particular angle naturally results in a
different Mic(m, R) value. To remove the rotation effect and achieve rotation
invariance, we need to group two pattern structures together if one can be ob-
tained by performing rotation with the other. To assign a unique identifier to
each rotation invariant group, the feature is now re-defined as,

Mic®(m, R) = min(Cir(Mic(m, R),n)), (2)

where n = 0,1,...,m — 1, Cir(z,n) performs a circular anti-clockwise bit-wise
shift on the m-bit number by n times. Unlike the conventional LBP, we consider
all the pattern combinations and group them into the same rotation invariance
group. Therefore, no matter how much the image is rotated (randomly rotated),
we can still map each pattern in the rotated image into one group, while for
the approach of local binary patterns some kinds of rotation angles will lead
to rotation variant effects due to interpolation of pixels intensities of rotated
images.

In the real world applications, rotation angles are not always integers or reg-
ular angles. As such, any texture classification approach should be robust to
random rotation. For the approach of ”uniform LBP”, some patterns that are
uniform will be changed to non-uniform due to the interpolation of random ro-
tated images. To solve this problem, we propose to consider all pattern labels
and use the frequency histogram to find a minimum set of pattern labels that
represent 80% of the pattern labels in an image because they should correctly
represent the dominant pattern labels given the image. This is more robust to
random rotation because no matter how much the image is rotated, the domi-
nant texture pattern information will be captured by the frequency histogram of
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the dominant pattern labels. According to our experimental results, it appears
that the first 20 pattern labels are generally sufficient to reach or exceed 80% of
the pattern labels in the image, and can effectively reflect the characteristics of
the dominant textures in the image.

3 Macroscopic Information

Although the microscopic information can effectively represent the small, local
pattern distribution in the image, it is still not sufficient to represent all the
information or characteristics of the whole image. It becomes obvious especially
when the resolution of the image is relatively high. To overcome the shortage of
the microscopic information, we need to derive the macroscopic information in
the image so that the microscopic and macroscopic information can complement
well with each other. We use the circularly symmetric Gabor filters to extract
macroscopic features of the image. The magnitude of the filtered image measures
existence of blob-like structures in textures, which describes whether the textural
pattern forms clusters. Apart from the traditional approach that averages pixel
magnitude of each filtered image, we compute the Tsallis entropy [14] from the
filter outputs. The reason is that the average pixel magnitude can be affected by
histogram equalization and suffered by the lost of individual general information
because of taking the average value. The Tsallis entropy of the filter outputs
can be expressed as a linear function of the histogram and is more robust to
histogram equalization.

Gabor filters are often used in texture analysis to provide features for texture
classification and segmentation [I5], [16]. It functions over the whole image.
Therefore, the features extracted from the filtered image are the macroscopic
features. It is also resistant to histogram equalization as it takes the overall
intensity distribution into consideration.

The traditional Gabor filter varies along one direction alone, thus making it
highly orientation specific. As a result, the filter is not suitable for achieving
rotation invariance. To achieve rotation invariance, we need to have circularly
symmetric Gabor filter, which is given by h(z,y) = g(z, y)e_ZT“jF\/’CQ“‘y2 where
F is the required center frequency. To extract macroscopic texture-based features
from an image using the circularly symmetric filters, we use four circularly sym-
metric Gabor filters, with different center frequencies (measured in cycles/image)
Fy =20, F, =3.17, F3 = 5.04 and Fy = 8.0 so that they are spaced in geomet-
ric progression across the Fourier domain to achieve optimum coverage. These
four filters overlap slightly and the Fourier domain is almost evenly covered.
Finally, four filter responses to the input image can be obtained. We denote the
histograms of four filter responses as H', H2, H3 H*, respectively. The fea-
tures at macroscopic level are then extracted from the individulal histograms by
computing the corresponding Tsallis entropy [14] S, = 172[:;_:10 h , where ¢ is a
continuous parameter, m denotes the maximum bin number for the histogram,
h; is the value of the corresponding histogram density, e.g. H!, H? H3 or H*.
The Tsallis entropies are powerful features to represent the macroscopic infor-
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mation extracted from the histogram [I8]. For texture classification, the four
Tsallis entropies extracted from H', H?, H® and H* are used as the features at
the macroscopic level.

4 Experimental Results

We have evaluated our method on three different databases with large sets of
texture images: (1) 24 source textures captured from the Brodatz album [IT];
(2) all textures (28 kinds of texture in total) in the Meastex database [12], which
is very challenging as most of the textures are very similar to each other; and
(3) 47 textures selected from the CUReT database [I3]. We have also reduced
the resolution of the images to study the effect of different image resolutions on
classification accuracy. In the experiments, we performed histogram equalization
and randomly rotated each image in order to test the robustness of our method.
The robustness of our approach is compared with six commonly used image
features, which are listed below.

1. Daubechies wavelet packet features (DWPF') [17] and [2]: The feature
vector consisted of the Ly norms of the images of the wavelet packet transform
[I7]. The wavelet transform was combined with spatial sub-sampling to give
critical image sampling. The rotation-invariant version DWPFRT [2] was also
implemented.

2. Traditional Gabor filters (Gabor) [3]: Eight Gabor filters were chosen,
spaced at the frequencies, F' = 2.0, 3.17, 5.04 and 8.0 and oriented at angles of 0
and 90 degrees to achieve optimal coverage in the Fourier domain. Average pixel
magnitude of each filtered image was used as feature. The circularly symmetric
version CGabor was also implemented.

3. Gaussian Markov random field parameters (GMRF) [19]: Each
pixel was assumed to be a linear combination of the intensities of its neighboring
pixels. We utilized the 4*" order neighborhood system. The linear parameters
were computed with the least square estimation.

4. Anisotropic Circular Gaussian MRF parameters (ACGMRF) [5]:
An improved version of the Gaussian MRF mentioned above was implemented.
It was rotation invariant with strong response to directional features. In total,
36 parameters were calculated using approximated least square estimation from
a 3"% order symmetrical 24 orientation neighborhood system.

5. Multiresolution Histograms (MH) [I8]: The generalized Tsallis en-
tropy and Fisher information were computed over different resolutions. In this
experiment, generalized Tsallis entropy and Fisher information were computed
over three resolution levels and let the continuous parameter g = 2.

6. Local binary patterns (LBP) [7]: The occurrence histogram of the
uniform local binary patterns were computed when P = 8,16,24 with R =1,2,3
respectively. The final features were the features obtained after combining the
three sets of features computed over P=8 R=1;P=16,R=2; P =24, R=3
together. It was claimed to have the best performance of local binary patterns
in Ojala et al.’s experiment [7].
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Also, the microscopic information is denoted as Mic and the macroscopic
information is denoted as Mac, and the combination of them is denoted as
MicMac. We used the support vector machine (SVM) as the classifier in our
experiments. SVM can perform binary classification and regression. They per-

form classification using the structural risk minimization principle. In particular,
the SVM creates a classifier with minimized VC dimension.

4.1 Experiments on Brodatz Database

The image data set includes 24 texture classes from the Brodatz album [11]. For
each texture class, there are 25 128x128 source images, in which initially we
divide each 128 x 128 source image into 4 disjoint 64 x 64 subimages. As such, we
have 100 samples for each texture class (25 source imagesx4 divisions). We use
the first 50 samples for the training of the classifier and the other 50 images are
used for the testing of the classifier.

Training and classification are first performed on the textures at their original
orientation and resolution, and without histogram equalization and rotation. It
produces the results listed in the first column of Table 2. Testing on the original
textures only verifies the basic capability of each feature, and does not test its
histogram equalization and rotation invariance. The training and testing sets
are then presented after performing histogram equalization but without rota-
tion. It yields the second column of results listed in Table 2. Then, the original
training and testing sets are presented by rotating each of them in a randomly
generated angle between 0 and 360 degrees (angles were uniformly distributed).
It should be noted that the randomly generated angle is not necessary an in-
teger value (e.g. generating 23.24 degree is possible), but without performing
histogram equalization. The classification results are presented in the third col-
umn of Table 2. The fourth column in Table 2 gives the results of performing
both histogram equalization and random rotation for each training set and test-
ing set.

Table 2. Performance of different features of 64x64, (32x32) and [16x16] image reso-
lutions in the Brodatz Database. Results of our methods are listed in the last three
rows. For each test (column), the highest classification accuracy is highlighted in bold.

Classification accuracy %

Features Original Histogram Randomly Histogram Equalized
Textures Equalized Rotated & Random Rotated
Textures Textures Textures
DWPF [17] 98.61(88.89)[80.56] 89.35(72.69)[55.56] 83.06(79.63)[59.72] 56.94(64.81)[41.20]
DWPFRT [2] 91.67(79.17)[68.06] 75.00(52.78)[43.06] 91.20(78.24)[64.81] 78.70(60.19)[38.43]
Gabor [3] 96.76(79.17)[56.02] 91.67(62.96)[38.43] 64.35(47.69)[45.37] 54.63(34.26)[29.17]
CGabor [3] 90.07(62.50)[48.61] 51.85(26.40)[32.90] 87.87(58.80)[50.46] 55.09(33.80)[29.63]
GMRFs [19] 96.70(53.40)[36.81] 84.33(44.20)[27.11] 44.30(24.74)[23.90] 40.40(22.43)[14.62]
ACGMRFs [5] 95.22(75.00)[33.19] 86.52(75.46)[42.13] 93.72(76.94)[31.48] 80.56(74.33)[37.96]
MH [18] 96.35(78.31)[53.68] 63.61(48.74)[25.12] 87.64(80.21)[56.27] 54.86(41.43)[24.76]
LBP [7] 98.37(92.85)[83.24] 97.44(90.07)[78.22] 92.13(86.37)[80.91] 91.67(84.81)[74.30]
Mic 98.61(93.96)[89.91] 97.69(93.33)[83.98] 94.44(89.16)[82.80] 91.82(85.46)[80.93]
Mac 87.84(63.00)[52.12] 60.73(29.25)[38.06] 85.65(62.17)[55.24] 63.47(39.02)[35.43]
MicMac  99.54(94.91)[93.02]99.54(95.37)[92.18]99.54(97.69)[92.35]99.07(94.32)[90.11]
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To observe the robustness of different approaches, we reduce the original im-
age resolution from 64x64 to 32x32, and to 16x16. To achieve the resolution
reduction, we first perform histogram equalization and random rotation on the
original 64x64 images. Then, we take the 32x32 and 16x16 resolution images
from the 64x64 images. Table 2, (see the numbers in brackets for 32x32 and
squares for 16x16), correspondingly lists the results of histogram equalization
and random rotation perform on the textures when all training and testing im-
ages are reduced to resolution of 32x32 and 16x16. It is observed that our
method based on both microscopic and macroscopic information outperforms
other six widely used image features.

4.2 Experiments on Meastex Database

In the Meastex database [12], images are divided into 28 kinds of textures, each
image is of resolution of 512x512, and there are 69 source images. It is a very
challenging database because, in 28 kinds of textures, some of the images, which
are very similar to each other, are divided into two different kinds of textures.
Since the Meastex database is very challenging, we do not reduce the resolution
less than 64x64 pixels. To setup the experimental environment, we first divide
each (512x512) source images into 64 disjoint (64x64) subimages. Half of the
subimages of each texture class is used as the training sets, while the other half
of the subimages of each texture class is used as the testing sets.

Table 3. Performance of different features of 64x64 image resolution in the Meastex
Database. Results of our methods are listed in the last three rows. For each test
(column), the highest classification accuracy is highlighted in bold.

Classification accuracy %
Features Original Histogram Randomly Histogram Equalized &
Textures Equalized Rotated Random Rotated

Textures Textures Textures
DWPF [I7] 50.74 42.34 36.31 30.50
DWPFRT [2] 42.53 31.63 48.52 27.39
Gabor [3] 56.06 52.63 46.23 39.61
CGabor [3] 51.30 42.63 53.68 38.10
GMRFs [19] 56.78 32.10 37.52 24.68
ACGMRFs [5] 60.73 58.71 50.31 48.64
MH [18] 51.66 26.74 46.32 22.64
LBP [7] 58.32 54.75 57.80 55.94
Mic 61.06 58.34 57.73 60.18
Mac 42.10 38.52 33.50 31.08
MicMac 81.57 81.57 81.06 80.48

The experimental results are listed in Table 3, which shows that Meastex is
a very challenging database because the classification accuracies are generally
lower that the Brodatz database. For our approach, if we just consider the mi-
croscopic information (see bottom third row in Table 3), it just has a mediocre
performance on the original textures (63.40%). On the other hand, if we just
consider the macroscopic information (see bottom second row in Table 3), its
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performance is not good (42.44%) because the detailed information is lost. How-
ever, if we combine the microscopic and macroscopic information (see last row in
Table 3), we can see that the performance is greatly improved (81.57%), which
is better than other methods listed in the table. This is a promising perfor-
mance in such challenging database. Also, even in the most difficult condition,
after performing histogram equalization and random rotation, our approach can
still maintain a good performance (81.07%), its robustness against histogram
equalization and random rotation is strongly implied.

4.3 Experiments on CUReT Database

For the CUReT database [13], there are 47 textures and each texture source
image is of 320x320 pixels. We first divide each source image into 25 disjoint
(64%x64) subimages. Then, we use the first 12 subimages as the training set,
and the other 13 subimages are used as the testing set. We choose the CUReT
database to evaluate the performance of our approach because it contains more
nature images. It is also a very challenging database. The experimental results
are listed in Table 4, in which our method gives promising performance when
both microscopic and macroscopic information is used.

Table 4. Performance of different features of 64x64 image resolution in the CUReT
Database. Results of our methods are listed in the last three rows. For each test
(column), the highest classification accuracy is highlighted in bold.

Classification accuracy %
Features Original Histogram Randomly Histogram Equalized &
Textures Equalized Rotated Random Rotated

Textures Textures Textures
DWPF [I7] 88.30 57.98 75.53 36.70
DWPFRT [2] 79.26 35.64 65.96 32.98
Gabor [3] 57.45 39.89 57.45 21.81
CGabor [3] 45.74 24.47 48.94 20.56
GMRFs [19] 75.85 53.60 41.52 38.63
ACGMRFs [5] 64.89 63.29 39.36 38.83
MH[Ig] 67.08 40.31 53.75 33.38
LBP [7] 69.15 67.55 65.43 65.85
Mic 81.38 77.12 76.60 77.05
Mac 68.80 60.47 71.31 63.37
MicMac 95.21 96.28 94.15 92.02

5 Conclusion

It is experimentally shown that our approach is capable of effectively capturing
and combining both microscopic and macroscopic information in the texture
images. Moreover, its excellent classification performance in Brodatz, Meastex
and CUReT databases was demonstrated experimentally. It was also shown to be
robust to image histogram equalization and random rotation. Our method was
compared with six widely used image features. It was shown that our approach
is the most robust one. To make our method invariant to other complex textures,
the macroscopic part of the method, i.e., the filters used in the method, can be
modified.
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