Skip to main content

Gaussian Decomposition for Robust Face Recognition

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

Abstract

This paper discusses Gaussian decomposition of facial images for robust recognition. While it cannot sufficiently extract an effective component, it can decompose an image into two effective components, the filtered image and its residual. The Gaussian component represents rough information for a lighting condition and small individuality. The residual represents individuality and the other information including small noise. The two components complement each other and they are evaluated independently in the framework of eigenface method. The image decomposition can also collaborate with parallel partial projections for robust recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  2. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 696–710 (1997)

    Article  Google Scholar 

  3. Sakaue, F., Shakunaga, T.: Combination of projectional and locational decompositions for robust face recognition. In: Proc. IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 407–421 (2005)

    Google Scholar 

  4. Shakunaga, T., Shigenari, K.: Decomposed eigenface for face recognition under various lighting conditions. In: Proc. CVPR2001, vol. 1, pp. 864–871 (2001)

    Google Scholar 

  5. Wang, H., Li, S., Wang, Y.: Face recognition under varying lighting conditions using self quotient image. In: Proc. IEEE FG2004, pp. 819–824 (2004)

    Google Scholar 

  6. Marr, D., Hildreth, E.C.: Theory of edge detection. Proc. Royal Society, London B 207, 187–217 (1980)

    Article  Google Scholar 

  7. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Generative models for recognition under variable pose and illuminations. In: Proc. FG 2000, pp. 277–284 (2000)

    Google Scholar 

  8. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

  9. Okabe, T., Sato, Y.: Object recognition based on photometric alignment using ransac. In: Proc. CVPR 2003, vol. 1, pp. 221–228 (2003)

    Google Scholar 

  10. Batur, A., Hayes III, M.: Linear subspaces for illumination robust face recognition. In: Proc. ICCV2001, vol. II, pp. 296–301 (2001)

    Google Scholar 

  11. Martinez, A., Benavente, R.: The AR face database. Technical Report #24, CVC (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakaue, F., Shakunaga, T. (2006). Gaussian Decomposition for Robust Face Recognition. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_12

Download citation

  • DOI: https://doi.org/10.1007/11612032_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics