Skip to main content

Texture Image Segmentation: An Interactive Framework Based on Adaptive Features and Transductive Learning

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1644 Accesses

Abstract

Texture segmentation is a long standing problem in computer vision. In this paper, we propose an interactive framework for texture segmentation. Our framework has two advantages. One is that the user can define the textures to be segmented by labelling a small part of points belonging to them. The other is that the user can further improve the segmentation quality through a few interactive manipulations if necessary.

The filters used to extract the features are learned directly from the texture image to be segmented by the topographic independent component analysis. Transductive learning based on spectral graph partition is then used to infer the labels of the unlabelled points. Experiments on many texture images demonstrate that our approach can achieve good results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) The handbook of pattern recognition and computer vision, 2nd edn., pp. 207–248. World Scientific Publishing Company, Singapore (1998)

    Google Scholar 

  2. Reed, T.R., du Buf, J.H.M.: A review of recent texture segmentation and feature extraction techniques. Computer Vision, Graphics, and Image Processing: Image Understanding 57, 359–372 (1993)

    Article  Google Scholar 

  3. Joachims, T.: Transductive learning via spectral graph partitioning. In: Proc. of Int. Conf. on Machine Learning (ICML), Washington DC, USA, pp. 87–93 (2003)

    Google Scholar 

  4. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000)

    MATH  Google Scholar 

  5. Zhu, X.J.: Semi-Supervised Learning with Graphs. PhD thesis, Carnegie Mellon University (2005)

    Google Scholar 

  6. Vapnik, V.N.: Statistical Learning Theory. John Wiley, New York (1998)

    MATH  Google Scholar 

  7. Hyvarinen, A., Hoyer, P.O., Inki, M.: Topographic independent component analysis. Neural Computation 13, 1525–1558 (2001)

    Google Scholar 

  8. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Vancouver, Canada, pp. 105–112 (2001)

    Google Scholar 

  9. Rother, C., Kolmogorov, V., Blake, A.: Grabcut - interactive foreground extraction using iterated graph cuts. In: Proc. of ACM SIGGRAPH, Los Angeles, USA, pp. 309–314 (2004)

    Google Scholar 

  10. Sun, J., Jia, J.Y., Tang, C.K., Shum, H.Y.: Poisson matting. In: Proc. of ACM SIGGRAPH, Los Angeles, USA, pp. 315–321 (2004)

    Google Scholar 

  11. De Bie, T., Cristianini, N.: Convex methods for transduction. In: Advances in Neural Information Processing Systems, Vancouver, Canada, pp. 73–80 (2003)

    Google Scholar 

  12. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc. of Conf. on Computational Learning Theory, Amsterdam, Holand, pp. 92–100 (1998)

    Google Scholar 

  13. Joachims, T.: Transductive inference for text classification using support vector machines. In: ICML, Bled, Slovenia, pp. 200–209 (1999)

    Google Scholar 

  14. Zhang, J.G., Tan, T.N.: Brief review of invariant texture analysis methods. Pattern Recognition 35, 735–747 (2002)

    Article  MATH  Google Scholar 

  15. Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Trans. On Pattern Analysis and Machine Intelligence 21, 291–310 (1999)

    Article  Google Scholar 

  16. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. On Pattern Analysis and Machine Intelligence 18, 837–842 (1996)

    Article  Google Scholar 

  17. Zeng, X.Y., Chen, Y.W., Nakao, Z., Lu, H.Q.: Texture segmentation based on pattern maps obtained by independent component analysis. In: Proc. of Int. Conf. On Neural Information Processing, Shanghai, China, pp. 1189–1193 (2001)

    Google Scholar 

  18. Hyvarinen, A.: Survey on independent component analysis. Neural Computing Surveys 2, 94–128 (1999)

    Google Scholar 

  19. Yu, S.X., Shi, J.B.: Segmentation given partial grouping constraints. IEEE Trans. On Pattern Analysis and Machine Intelligence 26, 173–183 (2004)

    Article  Google Scholar 

  20. Bell, A.J., Sejnowski, T.J.: The independent components of natural scenes are edge filters. Vision Research 37, 3327–3338 (1997)

    Article  Google Scholar 

  21. Brodatz, P.: Textures: A Photographics Album for Artists and Designers. Dovery, New York (1966)

    Google Scholar 

  22. MIT Vision and Modeling Group: Texture image library (1998), http://www.media.mit.edu/vismod/

  23. Natural Image Collection for ICA Experiments: Texture image library (2001), http://www.cis.hut.fi/projects/ica/data/images/

  24. Malik, J., Belongie, S., Shi, J.B., Leung, T.: Textons, contours and regions: Cue integration in image segmentation. In: ICCV, Corfu, Greece, pp. 918–925 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiang, S., Nie, F., Zhang, C. (2006). Texture Image Segmentation: An Interactive Framework Based on Adaptive Features and Transductive Learning. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_23

Download citation

  • DOI: https://doi.org/10.1007/11612032_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics