Skip to main content

Tracking Targets Via Particle Based Belief Propagation

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

Abstract

We first formulate multiple targets tracking problem in a dynamic Markov network(DMN)which is derived from a MRFs for joint target state and a binary process for occlusion of dual adjacent targets. We then propose to embed a novel Particle based Belief Propagation algorithm into Markov Chain Monte Carlo approach (MCMC) to obtain the maximum a posteriori (MAP) estimation in the DMN. In the message propagation,a stratified sampler incorporates information both from a learned bottom-up detector (e.g. SVM classifier) and a top-down dynamic behavior model. Experimental results show that the proposed method is able to track varying number of targets and handle their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Shalom, Y., Li, X.R.: Multitarget Multisensor Tracking: Principles and Techniques. YBS Publishing (1995)

    Google Scholar 

  2. Hue, C., Le Cadre, J.P., Perez, P.: Tracking multiple objects with particle filtering. IEEE Transactions on Aerospace and Electronic Systems 38(3), 791–812 (2002)

    Article  Google Scholar 

  3. Isard, M., MacCormick, J.P.: Bramble: A Bayesian multiple-blob tracker. In: Proceedings of International Conference on Computer Vision 2001, vol. 2, pp. 34–41 (2001)

    Google Scholar 

  4. Tweed, D., Calway, A.: Tracking Objects using subordinated condensation. In: Proceedings of the British Machine Vision Conference 2002, pp. 283–292 (2002)

    Google Scholar 

  5. Vermaak, J., Doucet, A., Perez, P.: Maintaining Multi-Modality through Mixture Tracking. In: Proceedings of International Conference on Computer Vision 2003, pp. 1110–1116 (2003)

    Google Scholar 

  6. Okuma, K., Taleghani, A., Freitas, N., Little, J., Lowe, D.: A Boosted Particle filter: Multitarget detection and tracking. In: Proceedings of European Conference on Computer Vision 2004, pp. 28–39 (2004)

    Google Scholar 

  7. Yu, T., Wu, Y.: Collaborative Tracking of Multiple Targets. In: Proceedings of International Conference on Computer Vision and Pattern Recognition 2004, pp. 834–841 (2004)

    Google Scholar 

  8. Isard, M.: PAMPAS: Real-valued graphical models for computer vision. In: Proceedings of International Conference on Computer Vision and Pattern Recognition 2003, pp. 613–620 (2003)

    Google Scholar 

  9. Sudderth, E., Ihler, A., Freeman, W., Willsky, A.: Nonparametric belief propagation. In: Proceedings of International Conference on Computer Vision and Pattern Recognition 2003, pp. 605–612 (2003)

    Google Scholar 

  10. MacCormick, J.P., Blake, A.: A probabilistic exclusion principle for tracking multiple objects. In: Proceedings of Internatioal Conference on Computer Vision 1999, pp. 572–578 (1999)

    Google Scholar 

  11. Tao, H., Sawhney, H.S., Kumar, R.: A sampling algorithm for tracking multiple objects. In: Proceedings of the International Workshop on Vision Algorithms, pp. 53–68 (1999)

    Google Scholar 

  12. Black, M.J., Rangarajan, A.: On the unification of line processes, Outlier Rejection and Robust statistics with applications in Early vision. Internatioal Journal of Computer Vision 19(1), 57–91 (1996)

    Article  Google Scholar 

  13. Zhao, T., Nevatia, R.: Tracking Multiple Humans in Crowded Environment. In: Proceedings of Internatioal Conference on Computer Vision and Pattern Recognition 2004, pp. 406–413 (2004)

    Google Scholar 

  14. Murphy, K., Weiss, Y., Jordan, M.: Loopy-belief propagation for approximate inference: An empirical study. In: Proceedings of Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 467–475 (1999)

    Google Scholar 

  15. Osher, S., Rubin, L.I., Fatemi, E.: Nonlinear Total Variation based noise removal algorithms. Physica D 60(60), 259–268 (1992)

    MATH  Google Scholar 

  16. Perez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based Probabilistic Tracking. In: Proceedings of Europe Confernce on Computer Vision 2002, pp. 661–675 (2002)

    Google Scholar 

  17. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xue, J., Zheng, N., Zhong, X. (2006). Tracking Targets Via Particle Based Belief Propagation. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_36

Download citation

  • DOI: https://doi.org/10.1007/11612032_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics