Skip to main content

Stereo Matching by Interpolation

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1625 Accesses

Abstract

Stereo vision is a long-studied problem in computer vision. Yet, few have approached it from the angle of interpolation. In this paper, we present an approach, Interpolation-based Iterative Stereo Matching (IISM), that regards stereo matching as a mapping that maps image position from one view to the corresponding position in the other view, and the mapping is to be learned or interpolated from some samples that could be just some initial correspondences over some distinct image features that are easy to match. Once the mapping is interpolated, it could be used to predict correspondences beyond the samples, and once such predicted correspondences are corrected and confirmed through local search around the predicted positions in the image data, they could be used together with the original samples as a new and larger sample for another round of interpolation. In other words, interpolation for the mapping is not one-time, but about a number of rounds of interpolation, correspondence prediction, prediction correction, sample set enlargement, and so on, each round producing a more accurate stereo correspondence mapping. IISM utilizes the Example-Based Interpolation (EBI) scheme, but in IISM the existing EBI is adapted to ensure the established correspondences satisfy exactly the epipolar constraint of the image pair, and to a certain extent preserve discontinuities in the stereo disparity space of the imaged scene. Experimental results on a number of real image datasets show that the proposed solution has promising performance even when the initial correspondence samples are sparse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnard, S., Fischler, M.: Computational stereo. ACM Comp. Surveys 14(4), 553–572 (1982)

    Article  Google Scholar 

  2. Dhond, U., Aggarwal, J.: Structure from stereo-a review. IEEE Trans. Syst., Man, Cybern 19(6), 1489–1510 (1989)

    Article  MathSciNet  Google Scholar 

  3. Brown, L.: A survey of image registration techniques. ACM Comp. Surveys 24(4), 325–376 (1992)

    Article  Google Scholar 

  4. Jones, G.: Constraint, optimization, and hierarchy: reviewing stereoscopic correspondence of complex features. CVIU 65(1), 57–78 (1997)

    MATH  Google Scholar 

  5. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1/2/3), 7–42 (2002)

    Article  MATH  Google Scholar 

  6. Zhang, Z., Shan, Y.: A progressive scheme for stereo matching. In: Pollefeys, M., Van Gool, L., Zisserman, A., Fitzgibbon, A.W. (eds.) SMILE 2000. LNCS, vol. 2018, pp. 68–85. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. IEEE 78(9), 1481–1497 (1990)

    Article  Google Scholar 

  8. Powell, M.: A review of methods for multivariable interpolation at scattered data points. In: Duff, I., Watson, G. (eds.) The State of the Art in Numerical Analysis, pp. 283–309 (1997)

    Google Scholar 

  9. Papageorgiou, C., Poggio, T.: A trainable system for object detection. IJCV 38(1), 15–33 (2000)

    Article  MATH  Google Scholar 

  10. Rose, C., Cohen, M., Bodenheimer, B.: Verbs and adverbs: multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18(5), 32–40 (1998)

    Article  Google Scholar 

  11. Ruprecht, D., Muller, H.: Image warping with scattered data interpolation. IEEE Comput. Graph. Appl. 15(2), 37–43 (1995)

    Article  Google Scholar 

  12. Liang, B., Chung, R.: On desirable properties of example-based interpolation. In: Proc. 2003 IEEE Intelligent Automation Conf., Hong Kong, China, pp. 81–86 (2003)

    Google Scholar 

  13. Faugeras, O., Luong, Q.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  14. Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence 78, 87–119 (1995)

    Article  Google Scholar 

  15. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Zhang, Z.: Determining the epipolar geometry and its uncertainty: a review. IJCV 27(2), 161–195 (1998)

    Article  Google Scholar 

  17. Longuet-Higgins, H.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133–135 (1981)

    Article  Google Scholar 

  18. Hartley, R.: In defence of the 8-point algorithm. In: ICCV, pp. 1064–1070 (1995)

    Google Scholar 

  19. Bergen, J., Anandan, P., Hanna, K., Hingorani, R.: Hierarchical model-based motion estimation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 237–252. Springer, Heidelberg (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, B., Chung, R. (2006). Stereo Matching by Interpolation. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_45

Download citation

  • DOI: https://doi.org/10.1007/11612032_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics