Skip to main content

A Level Set Approach for Shape Recovery of Open Contours

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1632 Accesses

Abstract

In this paper, a geometric deformable model for shape recovery of open contours in noisy images is presented. We use two level set functions to model the open contour and find the end points of the open contour as the intersection of the two level set functions. The evolutions of both level set functions do not depend on the gradient of the images, as in the classical geometric deformable models, but are decided by a region-based ”band velocity”. The ”band velocity” is different from region information introduced by other deformable models which can only be used to find the closed contours in images, it is designed for evolutions of both closed and open contours and particularly unique for contours which are open and do not enclose any region. Prior shape information is also integrated into the contour evolution process, which prevents two level set functions from intersecting at other places than at the contour end points. With the described method open contours can be recovered from noisy images. Successful experiments on several data sets are presented in this paper.

This work is partially done under National Institutes of Health, Grant No. R01 DC01758.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  2. Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. PAMI 17, 158–175 (1995)

    Google Scholar 

  3. Han, X., Xu, C., Prince, J.: Topology preserving level set method for geometric deformable models. PAMI 25, 755–768 (2003)

    Google Scholar 

  4. Niethammer, M., Tannenbaum, A.: Dynamic geodesic snakes for visual tracking. In: CVPR 2004, pp. I: 660–667 (2004)

    Google Scholar 

  5. Chan, T., Vese, L.: Active contours without edges. IP 10, 266–277 (2001)

    MATH  Google Scholar 

  6. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR 2000, pp. I: 316–323 (2000)

    Google Scholar 

  7. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  8. Smereka, P.: Spiral crystal growth. Physica D 138, 282–301 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Solem, J., Heyden, A.: Reconstructing open surfaces from unorganized data points. In: CVPR 2004, pp. II: 653–660 (2004)

    Google Scholar 

  10. Bertalmio, M., Sapiro, G., Randall, G.: Region tracking on level-sets methods. MedImg 18, 448–451 (1999)

    Google Scholar 

  11. Stone, M.: A guide to analyzing tongue motion from ultrasound images. International Journal of Clinical Linguistics and Phonetics 19, 455–502 (2005)

    Article  Google Scholar 

  12. Chalana, V., Costa, W.S., Kim, Y.: Integrating region growing and edge detection using regularization. In: Loew, M.H. (ed.) Medical Imaging 1995: Image Processing. Proc. SPIE, vol. 2434, pp. 262–271 (1995)

    Google Scholar 

  13. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Number. Math. 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Parthasarathy, V., Stone, M., Prince, J.L.: Spatiotemporal visualization of the tongue using ultrasound and kriging. In: Proc. Of SPIE-Medical Imaging (2003)

    Google Scholar 

  16. Li, M., Kambhamettu, C., Stone, M.: Tongue motion averaging from contour sequences. International Journal of Clinical Linguistics and Phonetics 19, 515–528 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M., Kambhamettu, C., Stone, M. (2006). A Level Set Approach for Shape Recovery of Open Contours. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_61

Download citation

  • DOI: https://doi.org/10.1007/11612032_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics