Skip to main content

A New Active Contour Model: Curvature Gradient Vector Flow

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1648 Accesses

Abstract

The paper presents a new external force field for active contour model, which is called CGVF (Curvature Gradient Vector Flow). CGVF improves on classical GVF by simplifying the formulas and increasing the item of curvature, so that the edge information can be kept well and diffused more quickly. Several standard images are used to segmenting experiments, and the results show that CGVF has obvious advantages compared with GVF in the iteration number of force field, the evolvement number of curve and the accuracy of convergence. In particular, when the initial curve is far from the edge of object, the convergence will be more superior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kass, M., Withkin, A., Terzopoulos, D.: Snakes:Active contour models. Internat. J. Computer Vision, 321–331 (1988)

    Google Scholar 

  2. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Anal. Machine Intell 12(9), 855–867 (1990)

    Article  Google Scholar 

  4. Cohen, T.F.: On active contour models and balloons. Comput. Vision Graph. Image Process(Image Understanding) 53(2), 211–218 (1991)

    MATH  Google Scholar 

  5. Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. Pattern Anal. Machine Intell. 15, 1131–1147 (1993)

    Article  Google Scholar 

  6. Malladi, R., Sethian, J.A., Vermuri, B.C.: Shape modeling with front propagation: a level set approach. Machine Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  7. Xu, C., Prince, J.L.: Gradient vector flow: A new external force model for snakes. In: IEEE Proc. Conf. on Computer Vision and Pattern Recognition, pp. 66–71 (1997)

    Google Scholar 

  8. Xu, C., Prince, J.L.: Snakes, shapes, and Gradient Vector flow. IEEE trans. Image Processing. 7, 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Processing 71, 131–139 (1998)

    Article  MATH  Google Scholar 

  10. Yuen, P.C., Feng, G.C., Zhou, J.P.: Contour detection method:Initialization and contour model. Pattern Recognition Letters 20, 141–148 (1998)

    Article  Google Scholar 

  11. Jain, A., Zhong, Y., Dubuisson-Jolly, M.: Deformable template models: A review. Signal Processing 71, 109–129 (1998)

    Article  MATH  Google Scholar 

  12. Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE trans. Image Processing 7(3), 376–386 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sethian, J.A.: Level set methods and fast marching methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  14. Zhong, Y., Jain, A.K., Dubuisson-Jolly, M.: Object tracking using deformable templates. IEEE Trans. Pattern Anal. Machiine Intell. 22, 544–549 (2000)

    Article  Google Scholar 

  15. Park, J., Keller, J.M.: Snake on the watershed. IEEE Trans. Pattern Anal. Machine Intell. 23, 1201–1205 (2001)

    Article  Google Scholar 

  16. Visen, N.S., Shashidhar, N.S., Paliwal, J., Jayas, D.S.: Identification and segmentation of occluding groups of grain kernels in a grain sample image. J. Agric. Eng. Res. 79(2), 159–166 (2001)

    Article  Google Scholar 

  17. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  18. Wang, Y.-C., Chou, J.-J.: Automatic segmentation of touching rice kernels with an active contour model. Transaction of ASAE 2004 47(5), 1803–1811 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ning, J., Wu, C., Liu, S., Wen, P. (2006). A New Active Contour Model: Curvature Gradient Vector Flow. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_64

Download citation

  • DOI: https://doi.org/10.1007/11612032_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics