Skip to main content

Dynamic Open Contours Using Particle Swarm Optimization with Application to Fluid Interface Extraction

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1610 Accesses

Abstract

This paper describes a method for the estimation of a dynamic open contour by incorporating a modified particle swarm optimization technique. This scheme has been applied to a “Particle Image Velocimetry” experiment for the analysis of fluid turbulence during a hydraulic jump. Due to inter reflections within the medium and refractions across different media interfaces, the imagery contains spurious regions, which have to be eliminated prior to the estimation of turbulence statistics at the fluid surface. The PIV image sequences provide a strict test bed for the performance analysis of this estimation mechanism due to the occurrence of intense specularity and extreme non-rigid motion dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1988)

    Article  Google Scholar 

  2. Williams, D.J., Shah, M.: A fast algorithm for active contours and curvature estimation. CVGIP: Image Underst. 55, 14–26 (1992)

    Article  MATH  Google Scholar 

  3. Cohen, L.D.: On active contour models and balloons. CVGIP 53, 211–218 (1991)

    Article  MATH  Google Scholar 

  4. Ronfard, R.: Region based strategies for active contour models. International Journal of Computer Vision 13, 229–251 (1994)

    Article  Google Scholar 

  5. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 3(7), 359–369 (1998)

    MathSciNet  Google Scholar 

  6. Isard, M., Blake, A.: Condensation – conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  7. Pérez, P., Blake, A., Gangnet, M.: Jetstream: Probabilistic contour extraction with particles. In: ICCV, pp. 524–531 (2001)

    Google Scholar 

  8. Ivins, J., Porrill, J.: Statistical snakes: Active region models. In: Proc. British Machine Vision Conference, vol. 2, pp. 377–386 (1994)

    Google Scholar 

  9. Pardo, X.M., Radeva, P.: Discriminant snakes for 3d reconstruction in medical images. In: Proc. International Conference on Pattern Recognition (ICPR 2000), vol. 4 (2000)

    Google Scholar 

  10. Peirson, W.L.: Measurement of surface velocities and shear at a wavy air-water interface using particle image velocimetry. Experiments in Fluids 23, 427–437 (1997)

    Article  Google Scholar 

  11. Zhong, J., Huang, T.S., Adrian, R.J.: Extracting 3d vortices in turbulent fluid flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(2), 193–199 (1998)

    Article  Google Scholar 

  12. Raffel, M., Willert, C., Kompenhas, J.: Particle Image Velocimetry, a Practical guide. Springer, Berlin (1998)

    Google Scholar 

  13. Lennon, J.M., Hill, D.F.: Particle image velocimetry measurements of undular and hydraulic jumps. Submitted to J. Hydraulic Engg. (2004)

    Google Scholar 

  14. Westerweel, J., Hofmann, T., Fukushima, C., Hunt, J.C.R.: Experimental investigation of the turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Experiments in Fluids 33, 873–878 (2002)

    Google Scholar 

  15. Battiti, R., Brunato, M., Pasupuleti, S.: Do not be afraid of local minima: Affine shaker and particle swarm. Technical report DIT-05-049, university of Trento, Italy (2005)

    Google Scholar 

  16. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  17. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method for constrained optimization problems. In: Proceedings of the Euro-International Symposium on Computational Intelligence (2002)

    Google Scholar 

  18. Akgul, Y.S., Kambhamettu, C.: A coarse-to-fine deformable contour optimization framework. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 174–186 (2003)

    Article  Google Scholar 

  19. Misra, S.K., Thomas, M., Kambhamettu, C., Kirby, J.T., Veron, F., Brocchini, M.: Estimation of complex air-water interfaces from P̧IV images. Experiments in Fluids (accepted for publication)

    Google Scholar 

  20. Amini, A., Weymouth, T., Jain, R.: Using dynamic programming for solving variational problems in vision. PAMI 12, 855–867 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thomas, M., Misra, S.K., Kambhamettu, C., Kirby, J.T. (2006). Dynamic Open Contours Using Particle Swarm Optimization with Application to Fluid Interface Extraction. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_65

Download citation

  • DOI: https://doi.org/10.1007/11612032_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics