Abstract
Tracking of regions and object boundaries in an image sequence is a well studied problem in image processing and computer vision. So far, numerous approaches tracking different features of the objects (contours, regions or points of interest) have been presented. Most of these approaches have problems with robustness. Typical reasons are noisy images, objects with identical features or partial occlusions of the tracked features. In this paper we propose a novel level set based tracking approach, that allows robust tracking on noisy images. Our framework is able to track multiple regions in an image sequence, where a level set function is assigned to every region. For already known or learned objects, transformation invariant shape priors can be added to ensure a robust tracking even under partial occlusions. Furthermore, we introduce a simple decision function to maintain the desired topology for multiple regions. Experimental results demonstrate the method for arbitrary numbers of shape priors. The approach can even handle full occlusions and objects which are temporarily hidden in containers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sethi, I.K., Jain, R.: Finding trajectories of feature points in an monocular image sequence. IEEE Trans. Pattern Anal. Machine Intell. 9, 56–73 (1987)
Crowley, J.L., Stelmaszyk, P., Discours, C.: Measuring image flow by tracking edge line. In: Proc. Second Int. Conf. of Computer Vision, pp. 658–664 (1988)
Deriche, R., Faugeras, O.D.: Tracking line segments. In: Proc. First European Conf. of Computer Vision, pp. 259–268 (1992)
Chen, Y., Rui, Y., Huang, T.S.: JPDAF based HMM for real-time contour tracking. In: Proc. of CVPR, pp. 543–550 (2001)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. and Machine Intell., 564–577 (2003)
Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh-Taylor instability. Lecture Notes in Mathematics, pp. 145–159 (1979)
Dervieux, A., Thomasset, F.: Multifluid incompressible flows by a finite element method. In: International Conference on Numerical Methods in Fluid Dynamics, pp. 158–163 (1980)
Osher, S.J., Sethian, J.A.: Fronts propagation with curvature depend speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Comp. Phys. 79, 12–49 (1988)
Bertalmio, M., Sapiro, G., Randall, G.: Morphing active contours: A geometric approach to topology-independent image segmentation and tracking. In: Proceedings of ICIP, pp. 318–322 (1998)
Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Machine Intell., 266–280 (2000)
Besson, S., Barlaud, M., Aubert, G.: Detection and tracking of moving objects using a new level set based method. In: Proceedings of ICPR, pp. 1100–1105 (2000)
Mansouri, A.: Region tracking via level set PDEs without motion computation. IEEE Trans. Pattern Anal. Machine Intell., 947–961 (2002)
Freedman, D., Zhang, T.: Active contours for tracking distributions. IEEE Trans. Image Processing, 518–526 (2004)
Yilmaz, A., Li, X., Shah, M.: Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Machine Intell., 1531–1536 (2004)
Shi, Y., Karl, W.C.: Real-time tracking using level sets. In: Proceedings of CVPR (2005)
Yuille, A., Hallinan, P.: Deformable templates. In: Blake, A., Yuille, A. (eds.) Active Vison, pp. 21–38 (1992)
Cootes, T.F., Hill, A., Chen, J.T., Haslam, J.: Use of active shape models for locating structures in medical images. Image and Vison Computing 12(6), 355–365 (1994)
Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contour. In: Proceedings of Conference Computer Vision and Pattern Recognition, vol. 1, pp. 316–323 (2000)
Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)
Chen, Y., Tagare, H.D., Thiruvenkadam, S., Huang, F., Wilson, D., Gophinath, K.S., Briggs, R.W., Geiser, E.A.: Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vison 50(3), 315–328 (2002)
Cremers, D., Sochen, N., Schnoerr, C.: Multiphase dynamic labeling for variational recognition-driven image segmentation. In: Proceedings of European Conference of Computer Vision, pp. 74–86 (2004)
Riklin-Raviv, T., Kiryati, N., Sochen, N.A.: Unlevel-sets: Geometry and prior-based segmentation. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 50–61. Springer, Heidelberg (2004)
Cremers, D., Sochen, N., Schnoerr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Proceedings of Scale-Space 2003, pp. 388–400 (2003)
Fussenegger, M., Deriche, R., Pinz, A.: Multiregion level set tracking with transformation invariant shape priors. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 674–683. Springer, Heidelberg (2006)
Chan, T., Vese, L.: Active contours without edges. IEEE Transaction on Image Processing 10(2), 266–277 (2001)
Tsai, A., Yezzi, A.J., Willsky, A.S.: Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation and magnification. IEEE Transaction on Image Processing 10(8), 1169–1186 (2001)
Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation 13(1/2), 249–269 (2002)
Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding 97(3), 259–282 (2005)
Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two phase flow. Journal of Computational Physics, 146–159 (1994)
Adalsteinsson, D., Sethian, J.: A fast marching level set method for propagating interfaces. Journal of Computational Physics, 269–277 (1995)
Sethian, J.A.: A fast marching level set method for monotonically advancing fonts. Proceedings of the National Academy of Sciences of USA, 1591–1595 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fussenegger, M., Deriche, R., Pinz, A. (2006). Multiregion Level Set Tracking with Transformation Invariant Shape Priors. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_68
Download citation
DOI: https://doi.org/10.1007/11612032_68
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31219-2
Online ISBN: 978-3-540-32433-1
eBook Packages: Computer ScienceComputer Science (R0)