Skip to main content

Multiregion Level Set Tracking with Transformation Invariant Shape Priors

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1625 Accesses

Abstract

Tracking of regions and object boundaries in an image sequence is a well studied problem in image processing and computer vision. So far, numerous approaches tracking different features of the objects (contours, regions or points of interest) have been presented. Most of these approaches have problems with robustness. Typical reasons are noisy images, objects with identical features or partial occlusions of the tracked features. In this paper we propose a novel level set based tracking approach, that allows robust tracking on noisy images. Our framework is able to track multiple regions in an image sequence, where a level set function is assigned to every region. For already known or learned objects, transformation invariant shape priors can be added to ensure a robust tracking even under partial occlusions. Furthermore, we introduce a simple decision function to maintain the desired topology for multiple regions. Experimental results demonstrate the method for arbitrary numbers of shape priors. The approach can even handle full occlusions and objects which are temporarily hidden in containers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sethi, I.K., Jain, R.: Finding trajectories of feature points in an monocular image sequence. IEEE Trans. Pattern Anal. Machine Intell. 9, 56–73 (1987)

    Article  Google Scholar 

  2. Crowley, J.L., Stelmaszyk, P., Discours, C.: Measuring image flow by tracking edge line. In: Proc. Second Int. Conf. of Computer Vision, pp. 658–664 (1988)

    Google Scholar 

  3. Deriche, R., Faugeras, O.D.: Tracking line segments. In: Proc. First European Conf. of Computer Vision, pp. 259–268 (1992)

    Google Scholar 

  4. Chen, Y., Rui, Y., Huang, T.S.: JPDAF based HMM for real-time contour tracking. In: Proc. of CVPR, pp. 543–550 (2001)

    Google Scholar 

  5. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. and Machine Intell., 564–577 (2003)

    Google Scholar 

  6. Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh-Taylor instability. Lecture Notes in Mathematics, pp. 145–159 (1979)

    Google Scholar 

  7. Dervieux, A., Thomasset, F.: Multifluid incompressible flows by a finite element method. In: International Conference on Numerical Methods in Fluid Dynamics, pp. 158–163 (1980)

    Google Scholar 

  8. Osher, S.J., Sethian, J.A.: Fronts propagation with curvature depend speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Comp. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bertalmio, M., Sapiro, G., Randall, G.: Morphing active contours: A geometric approach to topology-independent image segmentation and tracking. In: Proceedings of ICIP, pp. 318–322 (1998)

    Google Scholar 

  10. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Machine Intell., 266–280 (2000)

    Google Scholar 

  11. Besson, S., Barlaud, M., Aubert, G.: Detection and tracking of moving objects using a new level set based method. In: Proceedings of ICPR, pp. 1100–1105 (2000)

    Google Scholar 

  12. Mansouri, A.: Region tracking via level set PDEs without motion computation. IEEE Trans. Pattern Anal. Machine Intell., 947–961 (2002)

    Google Scholar 

  13. Freedman, D., Zhang, T.: Active contours for tracking distributions. IEEE Trans. Image Processing, 518–526 (2004)

    Google Scholar 

  14. Yilmaz, A., Li, X., Shah, M.: Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Machine Intell., 1531–1536 (2004)

    Google Scholar 

  15. Shi, Y., Karl, W.C.: Real-time tracking using level sets. In: Proceedings of CVPR (2005)

    Google Scholar 

  16. Yuille, A., Hallinan, P.: Deformable templates. In: Blake, A., Yuille, A. (eds.) Active Vison, pp. 21–38 (1992)

    Google Scholar 

  17. Cootes, T.F., Hill, A., Chen, J.T., Haslam, J.: Use of active shape models for locating structures in medical images. Image and Vison Computing 12(6), 355–365 (1994)

    Article  Google Scholar 

  18. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contour. In: Proceedings of Conference Computer Vision and Pattern Recognition, vol. 1, pp. 316–323 (2000)

    Google Scholar 

  19. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Chen, Y., Tagare, H.D., Thiruvenkadam, S., Huang, F., Wilson, D., Gophinath, K.S., Briggs, R.W., Geiser, E.A.: Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vison 50(3), 315–328 (2002)

    Article  MATH  Google Scholar 

  21. Cremers, D., Sochen, N., Schnoerr, C.: Multiphase dynamic labeling for variational recognition-driven image segmentation. In: Proceedings of European Conference of Computer Vision, pp. 74–86 (2004)

    Google Scholar 

  22. Riklin-Raviv, T., Kiryati, N., Sochen, N.A.: Unlevel-sets: Geometry and prior-based segmentation. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 50–61. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Cremers, D., Sochen, N., Schnoerr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Proceedings of Scale-Space 2003, pp. 388–400 (2003)

    Google Scholar 

  24. Fussenegger, M., Deriche, R., Pinz, A.: Multiregion level set tracking with transformation invariant shape priors. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 674–683. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Chan, T., Vese, L.: Active contours without edges. IEEE Transaction on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  26. Tsai, A., Yezzi, A.J., Willsky, A.S.: Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation and magnification. IEEE Transaction on Image Processing 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  27. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation 13(1/2), 249–269 (2002)

    Article  Google Scholar 

  28. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding 97(3), 259–282 (2005)

    Article  Google Scholar 

  29. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two phase flow. Journal of Computational Physics, 146–159 (1994)

    Google Scholar 

  30. Adalsteinsson, D., Sethian, J.: A fast marching level set method for propagating interfaces. Journal of Computational Physics, 269–277 (1995)

    Google Scholar 

  31. Sethian, J.A.: A fast marching level set method for monotonically advancing fonts. Proceedings of the National Academy of Sciences of USA, 1591–1595 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fussenegger, M., Deriche, R., Pinz, A. (2006). Multiregion Level Set Tracking with Transformation Invariant Shape Priors. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_68

Download citation

  • DOI: https://doi.org/10.1007/11612032_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics