Abstract
This paper presents a global approach for constructing high dynamic range mosaic from multiple images with large exposure differences. By relating image intensities to scene radiances with a convenient distortion model, we robustly estimated registration parameters for the high dynamic range global mosaic (HDRGM), simultaneously estimating scene radiances and distortion parameters in a single framework. Also, a simple detail-preserving contrast reduction method is introduced.
Preview
Unable to display preview. Download preview PDF.
References
Shum, H., Szeliski, R.: Construction and refinement of panoramic mosaics with global and local alignment. ICCV, 953–958 (1998)
Brown, M., Lowe, D.G.: Recognising panoramas. ICCV 2, 1218–1225 (2003)
Sawhney, H.S., Kumar, R.: True multi-image alignment and its application to mosaicing and lens distortion correction. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(3), 235–243 (1999)
Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH 1997, pp. 369–378 (1997)
Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. CVPR 1, 373–380 (1999)
Grossberg, M.D., Nayar, S.K.: Modeling the space of camera response functions. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 1272–1282 (2004)
Pal, C., Szeliski, R., Uyttendaele, M., Jojic, N.: Probability models for high dynamic range imaging. CVPR 2, 173–180 (2004)
Aggarwal, M., Ahuja, N.: High dynamic range panoramic imaging. ICCV 1, 2–9 (2001)
Schechner, Y.Y., Nayar, S.K.: Generalized mosaicing: High dynamic range in a wide field of view. Int’l Journal of Computer Vision 53, 245–267 (2003)
Hasler, D., Süsstrunk, S.: Mapping colour in image stitching applications. Journal of Visual Communication and Image Representation 15, 65–90 (2004)
Candocia, F.M.: A least squares approach for the joint domain and range registration of images. ICASSP 4, 3237–3240 (2002)
Kim, D.W., Hong, K.S.: Enhanced mosaic blending using intrinsic camera parameters from a rotating and zooming camera. ICIP 5, 3303–3306 (2004)
Litvinov, A., Schechner, Y.Y.: Addressing radiometric nonidealities: A unified framework. CVPR 2, 52–59 (2005)
Rousseeuw, P.J., Hampel, F.R., Ronchetti, E.M., Stahel, W.A. (eds.): Robust statistics: The approach based on influence function. Wiley, Chichester (1986)
Agapito, L.D., Hayman, E., Reid, I.: Self-calibration of rotating and zooming cameras. Int’l Journal of Computer Vision 42, 107–127 (2001)
Chan, T.F., Osher, S., Shen, J.: The digital tv filter and nonlinear denoising. IEEE Trans. on Image Processing 10, 231–241 (2001)
Tordoff, B., Murray, D.W.: Violating rotating camera geometry: The effect of radial distortionon self-calibration. ICPR 1, 423–427 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, DW., Hong, KS. (2006). High Dynamic Range Global Mosaic. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_75
Download citation
DOI: https://doi.org/10.1007/11612032_75
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31219-2
Online ISBN: 978-3-540-32433-1
eBook Packages: Computer ScienceComputer Science (R0)