Skip to main content

Effects of Image Segmentation for Approximating Object Appearance Under Near Lighting

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

Abstract

Shading analysis of an object under near lighting is not an easy task, because the direction and distance of the light source vary over the surface of the object. Observing a small area on the surface, however, techniques assuming far lighting are applicable, because variations of the direction and distance are small in the area. In this paper, we present two contributions to image segmentation for approximating object’s appearance under near light sources. First, we experimentally evaluate the accuracy of approximations using rectangular segmentation for images of objects under near light sources, and confirm the effects of image segmentation itself. Second, we propose a novel segmentation method for approximating images under near light sources. Our proposed method plans appropriate segmentations in terms of approximation accuracy, considering properties of objects and variable illumination conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Annen, T., Kautz, J., Durand, F., Seidel, H.-P.: Spherical harmonic gradients for mid-range illumination. In: Proc. Eurographics Sympo. Rendering 2004, pp. 331–336 (2004)

    Google Scholar 

  2. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. PAMI 25(2), 218–233 (2003)

    Google Scholar 

  3. Batur, A., Hayes, M.: Linear subspaces for illumination robust face recognition. In: Proc. IEEE CVPR 2001, vol. II, pp. 296–301 (2001)

    Google Scholar 

  4. Belhumeur, P., Kriegman, D.: What is the set of images of an object under all possible lighting conditions? Int’l. J. Computer Vision 28(3), 245–260 (1998)

    Article  Google Scholar 

  5. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. PAMI 25(9), 1063–1074 (2003)

    Google Scholar 

  6. Clark, J.: Active photometric stereo. In: Proc. IEEE CVPR 1992, pp. 29–34 (1992)

    Google Scholar 

  7. Du, F., Okabe, T., Sato, Y., Sugimoto, A.: Reflectance estimation from motion under complex illumination. In: Proc. IAPR ICPR 2004, pp. 218–222 (2004)

    Google Scholar 

  8. Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  9. Frolova, D., Simakov, D., Basri, R.: Accuracy of spherical harmonics approximations for images of Lambertian objects under far and near lighting. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 574–587. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. PAMI 23(6), 643–660 (2001)

    Google Scholar 

  11. Iwahori, Y., Sugie, H., Ishii, N.: Reconstructing shape from shading images under point light source illumination. In: Proc. IEEE ICPR 1990, pp. I-83–87 (1990)

    Google Scholar 

  12. Kim, B., Burger, P.: Depth and shape from shading using the photometric stereo method. CVGIP: Image Understanding 54(3), 416–427 (1991)

    Article  MATH  Google Scholar 

  13. Marschner, A., Greenberg, D.: Inverse lighting for photography. In: Fifth Color Imaging Conference, pp. 262–265 (1997)

    Google Scholar 

  14. Okabe, T., Sato, I., Sato, Y.: Spherical harmonics vs. Haar wavelets: basis for recovering illumination from cast shadows. In: Proc. IEEE CVPR 2004, pp. I–50–57 (2004)

    Google Scholar 

  15. Okabe, T., Sato, Y.: Object recognition based on photometric alignment using RANSAC. In: Proc. IEEE CVPR 2003, pp. I–221–228 (2003)

    Google Scholar 

  16. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  17. Ramamoorthi, R., Hanrahan, P.: On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. J. Opt. Soc. Am. A 18(10), 2448–2459 (2001)

    Article  MathSciNet  Google Scholar 

  18. Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Proc. ACM SIGGRAPH 2001, pp. 117–128 (2001)

    Google Scholar 

  19. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proc. ACM SIGGRAPH 2001, pp. 497–500 (2001)

    Google Scholar 

  20. Sakaue, F., Shakunaga, T.: Face recognition by parallel partial projections. In: Proc. ACCV 2004, pp. 144–150 (2004)

    Google Scholar 

  21. Sato, I., Okabe, T., Sato, Y., Ikeuchi, K.: Appearance sampling for obtaining a set of basis images for variable illumination. In: Proc. IEEE ICCV 2003, pp. 800–807 (2003)

    Google Scholar 

  22. Shashua, A.: On photometric issues in 3D visual recognition from a single 2D image. Int’l. J. Computer Vision 21(1/2), 99–122 (1997)

    Article  Google Scholar 

  23. Shum, H.-Y., Ikeuchi, K., Reddy, R.: Principal component analysis with missing data and its application to polyhedral object modeling. IEEE Trans. PAMI 17(9), 854–867 (1995)

    Google Scholar 

  24. Simakov, D., Frolova, D., Basri, R.: Dense shape reconstruction of a moving object under arbitrary, unknown lighting. In: Proc. IEEE ICCV 2003, pp. 1202–1209 (2003)

    Google Scholar 

  25. Sloan, P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low frequency lighting environments. In: Proc. ACM SIGGRAPH 2002, pp. 527–536 (2002)

    Google Scholar 

  26. Zhao, L., Yang, Y.-H.: Theoretical analysis of illumination in PCA-based vision systems. Pattern Recognition 32(4), 547–564 (1999)

    Article  Google Scholar 

  27. Zhao, L., Yang, Y.-H.: Mosaic image method: a local and global method. Pattern Recognition 32(8), 1421–1433 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okabe, T., Sato, Y. (2006). Effects of Image Segmentation for Approximating Object Appearance Under Near Lighting. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_77

Download citation

  • DOI: https://doi.org/10.1007/11612032_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics