Skip to main content

Fast Feature Extraction Using Approximations to Derivatives with Summed-Area Images

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1611 Accesses

Abstract

Accurate and stable identification of feature points is a requirement for such varied applications as wide-baseline stereo, object recognition and simultaneous localisation and mapping. Although a wide variety of feature extraction methods exist, certain aspects remain active areas of research.

In this paper, a feature model is proposed which makes use of the summed area images in achieving scale invariance at the loss of theoretical rotational invariance. By making use of approximations to first and second derivatives, as well as the Laplacian, a wide variety of features may be obtained. Additionally, the stability of this method is increased by an improved approach to ordering of features.

Evaluation is performed versus other common approaches using tests on precision, recall and information content of the extracted points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of CVPR (1994)

    Google Scholar 

  2. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 404–416. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 90–110 (2004)

    Article  Google Scholar 

  4. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. Image and Vision Computing 22(10), 761–767 (2004)

    Article  Google Scholar 

  5. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proceedings CVPR, Part 2, pp. 257–263 (2003)

    Google Scholar 

  6. Lindeberg, T.: Feature Detection with Automatic Scale Selection. IJCV 30(2), 79–116 (1998)

    Article  Google Scholar 

  7. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. IJCV 60(1), 63–86 (2004)

    Article  Google Scholar 

  8. Crow, F.: Summed Area Tables for Texture Mapping. SIGGRAPH 18(3), 207–212 (1984)

    Article  Google Scholar 

  9. Viola, P., Jones, M.: Robust real-time face detection. IJCV 57(2), 137–154 (2004)

    Article  Google Scholar 

  10. Kovesi, P.: Image Features from Phase Congruency. Videre: Journal of Computer Vision Research 1(3), 1–27 (1999)

    Google Scholar 

  11. Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented patches. In: Proceedings CVPR, Part 1, pp. 510–517 (2005)

    Google Scholar 

  12. Florack, L., ter Haar, B.R., Koenderink, J., Viergever, M.: The gaussian scale-space paradigm and the multiscale local jet. IJCV 18, 61–75 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wyatt, P., Nakai, H. (2006). Fast Feature Extraction Using Approximations to Derivatives with Summed-Area Images. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_78

Download citation

  • DOI: https://doi.org/10.1007/11612032_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics