Skip to main content

Interactive Contour Extraction Using NURBS-HMM

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1683 Accesses

Abstract

In the paper, we attempt to develop a novel method to offer the possibility even for a non-expert to extract easily the contour of an object. A NURBS-HMM framework aiming at the interactive image contour extraction is proposed. We fit the initial points input by users with Non-Uniform Rational B-Spline(NURBS). Due to the local controllability of NURBS, the control points are considered as the states of Hidden Markov Model(HMM) framework, and the boundary features and uniformity along the boundary are integrated as the observations. The experimental results show the robustness of our method. As an interactive method, the method interacts with users in an efficient and comfortable way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1988)

    Article  Google Scholar 

  2. Cohen, L., Kimmel, R.: Global minimum for active contour models: A minimal path approach. IJCV 24, 57–78 (1997)

    Article  Google Scholar 

  3. Blake, A., Isard, M.: The Active Contours book. Springer, Heidelberg (1998)

    Google Scholar 

  4. Reese, L.: Intelligent Paint:Region-Based Interactive Image Segmentation. Masters Thesis, Department of Computer Science, Brigham Young University (1999)

    Google Scholar 

  5. Falcao, A., Udupa, J.: User-steered image segmentation paradigms: Live-wire and live-lane. GMIP 60, 233–260 (1998)

    Google Scholar 

  6. Mortensen, E., Morse, B., Barrett, W., Udupa, J.K.: Adaptive boundary detection using live-wire two-dimensional dynamic programming. In: IEEE Proc. of Computers in Cardiology (1992)

    Google Scholar 

  7. Mortensen, E., Barrett, W.: Intelligent scissors for image composition. In: Proc. of Computer Graphics, SIGGRAPH (1995)

    Google Scholar 

  8. Chuang, Y.-Y., Curless, B., Salesin, D., Szeliski, R.: A bayesian approach to digital matting. In: Proc. IEEE Conf. Computer Vision and Pattern Recog. (2001)

    Google Scholar 

  9. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in nd images. In: ICCV (2001)

    Google Scholar 

  10. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Transactions on Graphics (2004)

    Google Scholar 

  11. Rother, C., Kolmogorov, V., Blake, A.: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (2004)

    Google Scholar 

  12. Piegl, L., Shah, M.: The NURBS Book, 2nd edn. Springer, Heidelberg (1997)

    Google Scholar 

  13. Rabiner, L., Juang, B.: An introduction to hidden markov models. IEEE ASSP Mag. (1986)

    Google Scholar 

  14. Chen, Y., Rui, Y., Huang, T.: Jpdaf based hmm for real-time contour tracking. In: Proc. of the IEEE CVPR (2001)

    Google Scholar 

  15. Liang, K., Rajeswari, M., Khoo, B.: Free form shape representation using nurbs modeling. In: Proc. of the Int. CGVCV (2002)

    Google Scholar 

  16. Dijkstra, E.: A note on two problems in connection with graphs. Numerische Mathematic 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  17. Derrode, S., Pieczynski, W.: Sar image segmentation using generalized pairwise markov chains. SPIE’s International Symposium on Remote Sensing, 22–27 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lei, D., Pan, C., Yang, Q., Shi, M. (2006). Interactive Contour Extraction Using NURBS-HMM. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_86

Download citation

  • DOI: https://doi.org/10.1007/11612032_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics