Skip to main content

Learning Parameter Tuning for Object Extraction

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

Abstract

This paper presents a learning-based method for parameter tuning of object recognition systems and its application to automatic road extraction from high resolution remotely sensed (HRRS) images. Our approach is based on region growing using fast marching level set method (FMLSM), and machine learning for automatically tuning its parameters. FMLSM is used to extract the shape of objects in images. Parameters are introduced into the speed function of the FMLSM to improve flexibility and reflect the variety of images. The parameters are tuned using machine learning and utilizing background knowledge. The primary contribution of our approach is the ability to learn the parameters for a FMLSM model for object extraction. Experimental results on 11 HRRS image datasets, 1024*1024 pixels each with ground resolution of 1.3 meters, demonstrate the validity of the proposed algorithm. We are able to extract the roads without the use of heuristic parameters and other manual intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, C., Murai, S., Baltsavias, E.: Road network detection by mathematical morphology. In: ISPRS Workshop on 3D Geospatial Data Production: Meeting Applicat, Requirements, Paris, pp. 185–200 (1999)

    Google Scholar 

  2. Amini, J., Sarahjian, M.: Image map simplification by using mathematical morphology. ISPRS Journal of Photogrammetry and Remote Sensing 33 (2000)

    Google Scholar 

  3. Sowmya, A., Singh, S.: Rail: Extracting road segments from aerial images using machine learning. In: Proc. ICML 1999 Workshop on Learning in Vision, pp. 8–19 (1999)

    Google Scholar 

  4. Cohen, L.: On active contour models and balloons. CVGIP Image Understanding 53 (1991)

    Google Scholar 

  5. Baumgartner, A., Hinz, S., Wiedemann, C.: Efficient methods, and interfaces for road tracking. In: Proc. ISPRS-Commision III Symp. Photogrammet. Compu. Vision (PCV 2002), Graz, pp. 28–31 (2002)

    Google Scholar 

  6. Laptev, I., Mayer, H., Lindeberg, T., Eckstein, W., Steger, C., Baumgartner, A.: Automatic extraction of roads from aerial images based on scale space and snakes. Machne Vision Applicat. 12, 23–31 (2000)

    Article  Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision, 321–331 (1988)

    Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: ICCV 1995, Cambridge, USA, pp. 694–699 (1995)

    Google Scholar 

  9. Chen, A., Donovan, G., Sowmya, A., Trinder, J.: Inductive clustering: automatic low level segmentation in high resolution images. In: ISPRS Photogrammet. Comput. Vision, Graz, Austria, vol. A, p. 73 (2002)

    Google Scholar 

  10. Agouris, P., Doucette, P., Stefanidis, A.: Spatiospectral cluster analysis of elongated regions in aerial imagery. In: IEEE International Conference on Image Processing(ICIP), vol. 2, pp. 789–792 (2001)

    Google Scholar 

  11. Xiongcai, C., Sowmya, A., Trinder, J.: Learning to recognise roads from high resolution remotely sensed images. In: The 2nd International Conference on Intelligent Sensors. Sensor Networks and Information Processing, Melbourne (2005)

    Google Scholar 

  12. Baumgartner, A., Steger, A., Mayer, C., Eckstein, W., Ebner, H.: Automatic road extraction based on multi-scale, grouping and context. Photogrammet. Eng. Remotely Sensing 65, 777–786 (1999)

    Google Scholar 

  13. McKeown, D., Cochran, S., Ford, S., Mcglone, J., Shufelt, J., Yocum, D.: Fusion of hydice hyperspectral data with panchromatic imagery for cartographic feature extraction. IEEE Trans. Geosci. Remote Sensing 27, 1261–1277 (1999)

    Article  Google Scholar 

  14. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (1995)

    Google Scholar 

  15. Zlotnick, A., Carnine, P.: Finding roads seeds in aerial images. In: CVGIP, Image Understanding, vol. 57, pp. 243–260 (1993)

    Google Scholar 

  16. Keaton, T., Brokish, J.: Evolving roads in ikonos multispectral imagery. In: Proceedings of International Conference on Image Processing (2003)

    Google Scholar 

  17. Geman, D., Jedynak, B.: An active testing model for tracking roads in satellite images. IEEE Trans. Pattern Anal. Machine Intell. 18 (1996)

    Google Scholar 

  18. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 666–673 (1996)

    Google Scholar 

  19. Bhanu, B., Sungkee, L., Ming, J.: Adaptive image segmentation using a genetic algorithm. Systems, Man and Cybernetics, IEEE Transactions on 25, 1543 (1995)

    Article  Google Scholar 

  20. Kohavi, R., John, G.: Wrapper for feature subset selection. Journal of Artificial Intelligence 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  21. Pratt, W.: Digital Image Processing. Wiley, Chichester (1991)

    MATH  Google Scholar 

  22. Haralick, R.: Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979)

    Article  Google Scholar 

  23. Smola, A.J., Sch, B.: A tutorial on support vector regression. NeuroCOLT2 Technical Report Series (1998)

    Google Scholar 

  24. Wiedemann, C., Heipke, C., Mayer, H., Hamet, O.: Empirical evaluation of automatically extracted road axes. In: CVPR Workshop on Empirical EvaluationMethods in Computer Vision, pp. 172–187 (1998)

    Google Scholar 

  25. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  26. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  27. Telea, A., Vilanova, A.: A robust level-set algorithm for centerline extraction. In: Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2003)

    Google Scholar 

  28. Malladi, R., Sethian, J.: A unified approach to noise removal, image enhancement, and shape recovery. IEEE Trans. on Image Processing 5, 1554–1568 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, X., Sowmya, A., Trinder, J. (2006). Learning Parameter Tuning for Object Extraction. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_87

Download citation

  • DOI: https://doi.org/10.1007/11612032_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics