Skip to main content

Region-Level Motion-Based Foreground Detection with Shadow Removal Using MRFs

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

Abstract

This paper presents a new approach to automatic segmentation of foreground objects with shadow removal from an image sequence by integrating techniques of background subtraction and motion-based foreground segmentation. First, a region-based motion segmentation algorithm is proposed to obtain a set of motion-coherence regions and the correspondence among regions at different time instants. Next, we formulate the foreground detection problem as a graph labeling over a region adjacency graph (RAG) based on Markov random fields (MRFs) statistical framework. A background model representing the background scene is built and then is used to model a likelihood energy. Besides the background model, the temporal and spatial coherence are also maintained by modeling it as a prior energy. Finally, a labeling is obtained by maximizing a posterior energy of the MRFs. Experimental results for several video sequences are provided to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gupte, S., Masoud, O., Martin, R.F.K., Papanikolopoulos, N.P.: Detection and Classification of Vehicles. IEEE Transactions on Intelligent Transportation Systems 3(1), 37–47 (2002)

    Article  Google Scholar 

  2. Haritaoglu, I., Harwood, D., Davis, L.S.: W4: Real-Time Surveillance of People and Their Activities. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 809–830 (2000)

    Article  Google Scholar 

  3. Friedman, N., Russell, S.: Image Segmentation in Video Sequence: A Probabilistic Approach. In: International Conference on Uncertainty in Artificial Intelligence (1997)

    Google Scholar 

  4. Stauffer, C., Grimson, W.: Adaptive Background Mixture Models for Real-Time Tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2 (1999)

    Google Scholar 

  5. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proceedings of the IEEE 90, 1151–1162 (2002)

    Article  Google Scholar 

  6. Wang, J.Y.A., Adelson, E.H.: Spatio-Temporal Segmentation of Video Data. In: Proceedings of the SPIE: Image and Video Processing (1994)

    Google Scholar 

  7. Borshukov, G.D., Bozdagi, G.: Motion Segmentation by Multistage Affine Classification. IEEE Transactions on Image Process 6, 1591–1594 (1997)

    Article  Google Scholar 

  8. Tsaig, Y., Averbuch, A.: Automatic Segmentation of Moving Objects in Video Sequences: A Region Labeling Approach. IEEE Transactions on Circuits and Systems for Video Technology 12, 597–612 (2002)

    Article  Google Scholar 

  9. Altunbasak, Y., Eren, P.E., Tekalp, A.M.: Region-Based Parametric Motion Segmentation Using Color Information. Graphical Models and Image Processing: GMIP 60, 13–23 (1998)

    Article  Google Scholar 

  10. Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. AI Memo 572, Massachusetts Institue of Technology (1980)

    Google Scholar 

  11. Salembier, P., Pardas, M.: Hierarchical Morphological Segmentation for Image Sequence Coding. IEEE Transaction on Image Processing 3, 639–651 (1994)

    Article  Google Scholar 

  12. Choi, J.G., Lee, S.W., Kim, S.D.: Spatio-Temporal Video Segmentation Using a Joint Similarity Measure. IEEE Transactions on Circuits and Systems for Video Technology 7, 279–286 (1997)

    Article  Google Scholar 

  13. Wang, J.Y.A., Adelson, E.H.: Representation Moving Images with Layers. IEEE Transactions on Image Processing 3, 625–638 (1994)

    Article  Google Scholar 

  14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience, Hoboken (2000)

    Google Scholar 

  15. Mak, B., Barnard, E.: Phone Clustering Using the Bhattacharyya Distance. In: Fouth International Conference on Spoken Language Processing (ICSLP), vol. 4, pp. 2005–2008 (1996)

    Google Scholar 

  16. Elgammal, A., Harwood, D., Davis, L.S.: Non-parametric Model for Background Subtraction. In: IEEE International Conference on Computer Vision Frame-Rate Workshop (1999)

    Google Scholar 

  17. Li, S.Z.: Markov Random Field Modeling in Computer Vision. In: Proceedings of European Conference in Computer Vision (1994)

    Google Scholar 

  18. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette Analysis-Based Gait Recognition for Human Identification. IEEE Transaction on Pattern Analysis and Machine Intelligence 25, 1505–1518 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, SS., Fu, LC., Hsiao, PY. (2006). Region-Level Motion-Based Foreground Detection with Shadow Removal Using MRFs. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_88

Download citation

  • DOI: https://doi.org/10.1007/11612032_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics