Skip to main content

Markovian Framework for Foreground-Background-Shadow Separation of Real World Video Scenes

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1636 Accesses

Abstract

In this paper we give a new model for foreground-back-ground-shadow separation. Our method extracts the faithful silhouettes of foreground objects even if they have partly background like colors and shadows are observable on the image. It does not need any a priori information about the shapes of the objects, it assumes only they are not point-wise. The method exploits temporal statistics to characterize the background and shadow, and spatial statistics for the foreground. A Markov Random Field model is used to enhance the accuracy of the separation. We validated our method on outdoor and indoor video sequences captured by the surveillance system of the university campus, and we also tested it on well-known benchmark videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benedek, C., Szirányi, T.: A Markov Random Field Model for Foreground-Background Separation. In: Joint Hungarian-Austrian Conference on Image Processing and Pattern Recognition (HACIPPR), Veszprém, Hungary, May 11-13 (2005)

    Google Scholar 

  2. Berthod, M., Kato, Z., Yu, S., Zerubia, J.: Bayesian image classification using Markov Random Fields. Image and Vision Computing 14, 285–295 (1996)

    Article  Google Scholar 

  3. Cucchiara, R., Grana, C., Neri, G., Piccardi, M., Prati, A.: The Sakbot System for Moving Object Detection and Tracking. Video-Based Surveillance Systems- Computer Vision and Distributed Processing, 145–157 (2001)

    Google Scholar 

  4. Czúni, L., Szirányi, T.: Motion Segmentation and Tracking with Edge Relaxation and Optimization using Fully Parallel Methods in the Cellular Nonlinear Network Architecture. Real-Time Imaging 7(1), 77–95 (2001)

    Article  MATH  Google Scholar 

  5. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 721–741 (1984)

    Google Scholar 

  6. Mikic, I., Cosman, P., Kogut, G., Trivedi, M.M.: Moving Shadow and Object Detection in Traffic Scenes. In: Proc. ICPR, pp. 321–324 (2000)

    Google Scholar 

  7. Paragios, N., Ramesh, V.: A MRF-based Real-Time Approach for Subway Monitoring. In: IEEE Conference in Computer Vision and Pattern Recognition (CVPR), pp. 1034–1040 (2001)

    Google Scholar 

  8. Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: algorithms and evaluation. PAMI 25(7), 918–923 (2003)

    Google Scholar 

  9. Rittscher, J., Kato, J., Joga, S., Blake, A.: A Probabilistic Background Model for Tracking. In: Proc. European Conf. Computer (2000)

    Google Scholar 

  10. Stauffer, C., Grimson, W.E.L.: Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  11. Szirányi, T., Zerubia, J.: Markov Random Field Image Segmentation using Cellular Neural Network. IEEE Tr. Circuits and Systems 44(I), 86–89 (1997)

    Article  Google Scholar 

  12. Yilmaz, A., Li, X., Shah, M.: Object Contour Tracking Using Level Sets. Asian Conference on Computer Vision, ACCV 2004, Jaju Islands, Korea (2004)

    Google Scholar 

  13. Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  14. Wang, Y., Tan, T., Loe, K.-F.: A Dynamic Hidden Markov Random Field Model for Foreground and Shadow Segmentation. In: Seventh IEEE Workshops on Application of Computer Vision, Breckenridge, Colorado (2005)

    Google Scholar 

  15. Zhou, Y., Gong, Y., Tao, H.: Background segmentation using spatialtemporal multi-resolution MRF. IEEE Motion 2005 (January 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benedek, C., Szirányi, T. (2006). Markovian Framework for Foreground-Background-Shadow Separation of Real World Video Scenes. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_90

Download citation

  • DOI: https://doi.org/10.1007/11612032_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics