Skip to main content

Surface Registration Using Extended Polar Maps

  • Conference paper
Book cover Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1564 Accesses

Abstract

In this paper, we are presenting a new surface signature-based representation that is orientation-independent and can be used to match and align surfaces under rigid transformation including uniform scaling. The proposed scheme represents the surface signatures as extended polar maps. Correlation of the maps is used to establish point correspondences between two views; from these correspondences a rigid transformation, including uniform scaling, that aligns the views is calculated. The effectiveness of the proposed scheme is demonstrated through several registration experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardini, F., Martin, I., Mittleman, J., Rushmeier, H., Taubin, G.: Building a digital model of michelangelo’s florentine pieta. IEEE Computer Graphics & Applications 22(1), 59–67 (2002)

    Article  Google Scholar 

  2. Ikeuchi, K., Sato, Y. (eds.): Modeling From Reality. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  3. Rusinliewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proc. of the 3th Int. Conf. on 3-D Digital Imaging and Modeling, vol. 1, pp. 145–152 (2001)

    Google Scholar 

  4. Zhang, H., Hall-Holt, O., Kaufman, A.: Range image registration via probability field. In: Proc. of the Computer Graphics International (CGI 2004), Crete, Greece, June 2004, pp. 546–552 (2004)

    Google Scholar 

  5. Blais, G., Levine, M.D.: Registering multiview range data to create 3d computer objects. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(8), 820–824 (1995)

    Article  Google Scholar 

  6. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3d rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications 9, 272–290 (1997)

    Article  Google Scholar 

  7. Zhang, Z.: Iterative point matching for registration of freeform curves and surfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(2), 119–152 (1994)

    Google Scholar 

  8. Okatani, I., Sugimoto, A.: Registration of range images that preserves local surface structures and color. In: Proc. of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT 2004), pp. 789–796 (2004)

    Google Scholar 

  9. Sharp, G.C., Lee, S.W., Wehe, D.K.: Icp registration using invariant features. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(1), 90–102 (2002)

    Article  Google Scholar 

  10. Besl, P., McKay, N.: A method for registration of 3-d shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  11. Fan, Y., Jiang, T., Evans, D.: Medical image registration using parallel genetic algorithms. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 304–314. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Robertson, C., Fisher, R.: Parallel evolutionary registration of range data. Computer Vision and Image Understanding 87(1), 39–50 (2002)

    Article  MATH  Google Scholar 

  13. Silva, L., Bellon, O.R.P., Boyer, K.L.: Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(5), 762–776 (2005)

    Article  Google Scholar 

  14. Stein, F., Medioni, G.: Structural indexing: efficient 3-d object recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 125–145 (1992)

    Article  Google Scholar 

  15. Chua, C.S., Jarvis, R.: Point signatures: A new representation for 3-d object recognition. International Journal of Computer Vision 25(1), 63–85 (1997)

    Article  Google Scholar 

  16. Johnson, J., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5), 433–449 (1999)

    Article  Google Scholar 

  17. Correa, S., Shapiro, L.: A new signature-based method for efficient 3-d object recognition. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 769–776 (2001)

    Google Scholar 

  18. Yamany, S.M., Farag, A.A.: Surface signatures: An orientation independent free-form surface representation scheme for the purpose of objects registration and matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(8), 1105–1120 (2002)

    Article  Google Scholar 

  19. Zhang, D., Herbert, M.: Harmonic maps and their applications in surface matching. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 524–530 (1999)

    Google Scholar 

  20. Chen, H., Bhanu, B.: 3d free-form object recognition in range images using local surface patches. In: Proc. of the 17th International Conference on Pattern Recognition, Cambridge, UK, pp. 524–530 (2004)

    Google Scholar 

  21. Sun, Y., Paik, J., Koschan, A., Page, D.L., Abidi, M.A.: Point fingerprint: A new 3-d object representation scheme. IEEE Trans. On Systems, Man and Cybernetics - Part B: Cybernetics 33(4), 712–717 (2003)

    Article  Google Scholar 

  22. Williams, J., Bennamoun, M.: Simultaneous registration of multiple corresponding point sets. Computer Vision and Image Understanding 81(1), 117–142 (2001)

    Article  MATH  Google Scholar 

  23. Hemayed, E.: A scalable approach for 3d mesh generation. In: Proc. of the 7th World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2003), Oralndo, FL (July 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hemayed, E.E. (2006). Surface Registration Using Extended Polar Maps. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_94

Download citation

  • DOI: https://doi.org/10.1007/11612032_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics