Skip to main content

Multiple Range Image Registration by Matching Local Log-Polar Range Images

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

  • 1616 Accesses

Abstract

We propose a method for coarse registration of multiple range images. A local log-polar range image is computed at every surface point of all input range images, and an invariant feature vector is generated from it. The correspondence of point pairs is determined by finding the closest feature vector pairs derived from different range images. The correspondence is validated, and the RANSAC is applied for extracting inlier point pairs to determine pairwise transformations between input range images. Finally, the global registration is determined by construcing the view tree of the input range images. The result of coarse registration is used as the initial state for the fine registration which is followed by the object shape modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. PAMI 14, 239–256 (1992)

    Google Scholar 

  2. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. 3DIM2001, pp. 145–152 (2001)

    Google Scholar 

  3. Horn, B.K.P., Harris, J.G.: Rigid body motion from range image sequences. CVGIP: Image Understanding 53, 1–13 (1991)

    Article  MATH  Google Scholar 

  4. Yamamoto, M., Boulanger, P., Beraldin, J.A., Rioux, M.: Direct estimation of range flow on deformable shape from a video rate range camera. IEEE Trans. PAMI 15, 82–89 (1993)

    Google Scholar 

  5. Masuda, T.: Registration and integration of multiple range images by matching signed distance fields for object shape modeling. Comput. Vis. Image Underst. 87, 51–65 (2002)

    Article  MATH  Google Scholar 

  6. Stein, F., Medioni, G.: Structural indexing: efficient 3-d object recognition. IEEE Trans. PAMI 14, 125–145 (1992)

    Google Scholar 

  7. Feldmar, J., Ayache, N.: Rigid, affine and locally affine rewgistration of free-form surfaces. Int. J. Comput. Vision 18, 99–119 (1996)

    Article  Google Scholar 

  8. Krsek, P., Pajdla, T., Hlavac, V.: Differential invariants as the base of triangulated surface registration. Comput. Vis. Image Underst. 87, 27–38 (2002)

    Article  MATH  Google Scholar 

  9. Wyngaerd, J.V., van Gool, L.: Automatic crude patch registration: Toward automatic 3D model building. Comput. Vis. Image Underst. 87, 8–26 (2002)

    Article  MATH  Google Scholar 

  10. Chua, C.S., Jarvis, R.: Point signatures: A new representation for 3D object recognition. Int. J. Comput. Vision 25, 63–85 (1997)

    Article  Google Scholar 

  11. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. PAMI 21, 433–449 (1999)

    Google Scholar 

  12. Huber, D., Hebert, M.: Fully automatic registration of multiple 3d data sets. Image and Vision Computing 21, 637–650 (2003)

    Article  Google Scholar 

  13. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Wolberg, G., Zokai, S.: Robust image registration using log-polar transform. In: Proc. ICIP 2000 (2000)

    Google Scholar 

  15. Hotta, K., Mishima, T., Kurita, T.: Scale invariant face detection and classification method using shift invariant features extracted from log-polar image. Trans. IEICE E84-D, 867–878 (2001)

    Google Scholar 

  16. Masuda, T.: Surface curvature estimation from the signed distance field. In: Proc. 3DIM 2003, pp. 361–368 (2003)

    Google Scholar 

  17. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18 (1975)

    Google Scholar 

  18. The stanford 3d scanning repository, http://graphics.stanford.edu/data/3Dscanrep/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masuda, T. (2006). Multiple Range Image Registration by Matching Local Log-Polar Range Images. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_95

Download citation

  • DOI: https://doi.org/10.1007/11612032_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics