Abstract
We propose a method for coarse registration of multiple range images. A local log-polar range image is computed at every surface point of all input range images, and an invariant feature vector is generated from it. The correspondence of point pairs is determined by finding the closest feature vector pairs derived from different range images. The correspondence is validated, and the RANSAC is applied for extracting inlier point pairs to determine pairwise transformations between input range images. Finally, the global registration is determined by construcing the view tree of the input range images. The result of coarse registration is used as the initial state for the fine registration which is followed by the object shape modelling.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. PAMI 14, 239–256 (1992)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. 3DIM2001, pp. 145–152 (2001)
Horn, B.K.P., Harris, J.G.: Rigid body motion from range image sequences. CVGIP: Image Understanding 53, 1–13 (1991)
Yamamoto, M., Boulanger, P., Beraldin, J.A., Rioux, M.: Direct estimation of range flow on deformable shape from a video rate range camera. IEEE Trans. PAMI 15, 82–89 (1993)
Masuda, T.: Registration and integration of multiple range images by matching signed distance fields for object shape modeling. Comput. Vis. Image Underst. 87, 51–65 (2002)
Stein, F., Medioni, G.: Structural indexing: efficient 3-d object recognition. IEEE Trans. PAMI 14, 125–145 (1992)
Feldmar, J., Ayache, N.: Rigid, affine and locally affine rewgistration of free-form surfaces. Int. J. Comput. Vision 18, 99–119 (1996)
Krsek, P., Pajdla, T., Hlavac, V.: Differential invariants as the base of triangulated surface registration. Comput. Vis. Image Underst. 87, 27–38 (2002)
Wyngaerd, J.V., van Gool, L.: Automatic crude patch registration: Toward automatic 3D model building. Comput. Vis. Image Underst. 87, 8–26 (2002)
Chua, C.S., Jarvis, R.: Point signatures: A new representation for 3D object recognition. Int. J. Comput. Vision 25, 63–85 (1997)
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. PAMI 21, 433–449 (1999)
Huber, D., Hebert, M.: Fully automatic registration of multiple 3d data sets. Image and Vision Computing 21, 637–650 (2003)
Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)
Wolberg, G., Zokai, S.: Robust image registration using log-polar transform. In: Proc. ICIP 2000 (2000)
Hotta, K., Mishima, T., Kurita, T.: Scale invariant face detection and classification method using shift invariant features extracted from log-polar image. Trans. IEICE E84-D, 867–878 (2001)
Masuda, T.: Surface curvature estimation from the signed distance field. In: Proc. 3DIM 2003, pp. 361–368 (2003)
Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18 (1975)
The stanford 3d scanning repository, http://graphics.stanford.edu/data/3Dscanrep/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Masuda, T. (2006). Multiple Range Image Registration by Matching Local Log-Polar Range Images. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_95
Download citation
DOI: https://doi.org/10.1007/11612032_95
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31219-2
Online ISBN: 978-3-540-32433-1
eBook Packages: Computer ScienceComputer Science (R0)