Skip to main content

Shape Orientability

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Included in the following conference series:

Abstract

In this paper we consider some questions related to the orientation of shapes. We introduce as a new shape feature shape orientability, i.e. the degree to which a shape has distinct (but not necessarily unique) orientation. A new method is described for measuring shape orientability, and has several desirable properties. In particular, unlike the standard moment based measure of elongation, it is able to differentiate between the varying levels of orientability of n-fold rotationally symmetric shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cortadellas, J., Amat, J., de la Torre, F.: Robust Normalization of Silhouettes for Recognition Application. Patt. Rec. Lett. 25, 591–601 (2004)

    Article  Google Scholar 

  2. Freeman, H., Shapira, R.: Determining the Minimum-Area Encasing Rectangle for an Arbitrary Closed Curve. Comm. of the ACM 18, 409–413 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Horn, B.K.P.: Robot Vision. MIT Press, Cambridge (1986)

    Google Scholar 

  4. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)

    Google Scholar 

  5. Klette, R., Žunić, J.: Digital approximation of moments of convex regions. Graphical Models and Image Processing 61, 274–298 (1999)

    Article  Google Scholar 

  6. Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge (1999)

    Google Scholar 

  7. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, Heidelberg (1985)

    Google Scholar 

  8. Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proc. IEEE MELECON 1983, pp. A10.02/1–4 (1983)

    Google Scholar 

  9. Tsai, W.H., Chou, S.L.: Detection of Generalized Principal Axes in Rotationally Symmetric Shapes. Patt. Rec. 24, 95–104 (1991)

    Article  MathSciNet  Google Scholar 

  10. Žunić, J., Rosin, P.L.: A New Convexity Measurement for Polygons. IEEE Trans. PAMI 26(7), 923–934 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Žunić, J., Rosin, P.L., Kopanja, L. (2006). Shape Orientability. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_2

Download citation

  • DOI: https://doi.org/10.1007/11612704_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics