Skip to main content

Biologically Motivated Perceptual Feature: Generalized Robust Invariant Feature

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Included in the following conference series:

Abstract

In this paper, we present a new, biologically inspired perceptual feature to solve the selectivity and invariance issue in object recognition. Based on the recent findings in neuronal and cognitive mechanisms in human visual systems, we develop a computationally efficient model. An effective form of a visual part detector combines a radial symmetry detector with a corner-like structure detector. A general context descriptor encodes edge orientation, edge density, and hue information using a localized receptive field histogram. We compare the proposed perceptual feature (G-RIF: generalized robust invariant feature) with the state-of-the-art feature, SIFT, for feature-based object recognition. The experimental results validate the robustness of the proposed perceptual feature in object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. IJCV 37, 151–172 (2000)

    Article  MATH  Google Scholar 

  2. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. IJCV 60, 63–86 (2004)

    Article  Google Scholar 

  3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)

    Article  Google Scholar 

  4. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI 27, 1615–1630 (2005)

    Google Scholar 

  5. Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: CVPR 2004, pp. 506–513 (2004)

    Google Scholar 

  6. Tico, M., Kuosmanen, P.: Fingerprint matching using an orientation-based minutia descriptor. PAMI 25, 1009–1014 (2003)

    Google Scholar 

  7. Belongie, S., Malik, J., Puzicha, J.: Shape matching and bject recognition using shape contexts. PAMI 24, 509–522 (2002)

    Google Scholar 

  8. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: CVPR 2005 (2005)

    Google Scholar 

  9. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive field in macaque primary visual cortex. J. Neurophysiol. 88, 455–463 (2001)

    Google Scholar 

  10. Gawne, T.J., Martin, J.M.: Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. J. Neurophysiol. 88, 1128–1135 (2002)

    Article  Google Scholar 

  11. Boynton, G.M.: Adaptation and attentional selection. Nature Neurosci. 7, 8–10 (2004)

    Article  Google Scholar 

  12. Chomat, O., de Verdière, V.C., Hall, D., Crowley, J.L.: Local scale selection for gaussian based description techniques. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 117–134. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Wurtz, R.H., Kandel, E.R.: Perception of motion, depth and form. Principles of Neural Science, 548–571 (2000)

    Google Scholar 

  14. Kouh, M., Riesenhuber, M.: Investigating shape representation in area V4 with hmax: Orientation and grating selectivitiesn (Technical report)

    Google Scholar 

  15. Biederman, I.: Recognition-by-component: A theory of human image understanding. Psychological Review 94, 115–147 (1987)

    Article  Google Scholar 

  16. Okada, K., Comaniciu, D.: Scale selection for anisotropic scale-space: Application to volumetric tumor characterization. In: CVPR 2004, pp. 594–601 (2004)

    Google Scholar 

  17. Pasupathy, A., Connor, C.E.: Shape representation in area V4: Position-specific tuning for boundary conformation. J. Neurophysiol 86, 2505–2519 (2001)

    Google Scholar 

  18. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Context-free attentional operators: The generalized symmetry transform. IJCV 14, 119–130 (1995)

    Article  Google Scholar 

  19. Latecki, L.J., Lakämper, R.: Convexity rule for shape decomposition based on discrete contour evolution. CVIU, 73, 441–454 (1999)

    Google Scholar 

  20. Loy, G., Zelinsky, A.: Fast radial symmetry transform for detecting points of interest. PAMI 25, 959–973 (2003)

    Google Scholar 

  21. Schiele, B., Crowley, J.L.: Recognition without correspondence using multidimensional receptive field histograms. IJCV 36, 31–50 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, S., Kweon, I.S. (2006). Biologically Motivated Perceptual Feature: Generalized Robust Invariant Feature. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_31

Download citation

  • DOI: https://doi.org/10.1007/11612704_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics