Skip to main content

Super Resolution Using Graph-Cut

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Included in the following conference series:

Abstract

This paper addresses the problem of super resolution – obtaining a single high-resolution image given a set of low resolution images which are related by small displacements. We employ a reconstruction based approach using MRF-MAP formalism, and use approximate optimization using graph cuts to carry out the reconstruction. We also use the same formalism to investigate high resolution expansions from single images by deconvolution assuming that the point spread function is known. We present a method for the estimation of the point spread function for a given camera. Our results demonstrate that it is possible to obtain super-resolution preserving high frequency details well beyond the predicted limits of magnification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on PAMI 23, 1222–1239 (2001)

    Google Scholar 

  3. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP:Graphical Models and Image Processing 53, 231–239 (1991)

    Article  Google Scholar 

  4. Irani, M., Peleg, S.: Motion analysis for image enhancement: Resolution, occlusion, and transparency. Journal of Visual Communication and Image Representation 4, 324–335 (1993)

    Article  Google Scholar 

  5. Borman, S., Stevenson, R.: Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF. In: Bouman, C., Miller, E. (eds.) Computational Imaging II, Proceedings of the SPIE,San Jose, CA, USA, vol. 5299, pp. 234–245 (2004)

    Google Scholar 

  6. Rajan, D., Chaudhuri, S.: Simultaneous estimation of super-resolved scene and depth map for low resolution defocused observations. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 1102–1117 (2003)

    Article  Google Scholar 

  7. Joshi, M., Chaudhuri, S.: A learning based method for image super-resolution from zoomed observations. In: Proc. fifth Int. Conf. on Advances in Pattern Recognition, pp. 179–182 (2003)

    Google Scholar 

  8. Chaudhuri, S., Joshi, M.V.: Motion-Free Super-Resolution. Springer, Heidelberg (2004)

    Google Scholar 

  9. Schultz, R.R., Stevenson, R.L.: A bayesian approach to image expansion for improved definition. IEEE transctions on Image processing 3, 233–242 (1994)

    Article  Google Scholar 

  10. Capel, D., Zisserman, A.: Computer vision applied to super resolution. IEEE Signal Processing Magazine, 75–86 (2003)

    Google Scholar 

  11. Pickup, L.C., Roberts, S.J., Zisserman, A.: A sampled texture prior for image super-resolution. Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  12. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE computer Graphics and Applications, 56–65 (2002)

    Google Scholar 

  13. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. In: Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  14. Lin, Z., Shum, H.Y.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 83–97 (2004)

    Article  Google Scholar 

  15. Borman, S., Stevenson, R.: Super-resolution from image sequences – A review. In: Proceedings of the 1998 Midwest Symposium on Circuits and Systems, Notre Dame, IN, USA, pp. 374–378 (1998)

    Google Scholar 

  16. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on PAMI 26, 1124–1137 (2004)

    Google Scholar 

  17. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: European Conference on Computer Vision (2002)

    Google Scholar 

  18. Elad, M., Feuer, A.: Super resolution restoration of an image sequence: Adaptive filtering approach. IEEE Trans. on Image Processing 8, 387–395 (1999)

    Article  Google Scholar 

  19. Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical model-based motion estimation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 237–252. Springer, Heidelberg (1992)

    Google Scholar 

  20. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on PAMI 26 (2004)

    Google Scholar 

  21. Kolmogorov, V.: http://research.microsoft.com/~vnk/ , (2000)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mudenagudi, U., Singla, R., Kalra, P., Banerjee, S. (2006). Super Resolution Using Graph-Cut. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_39

Download citation

  • DOI: https://doi.org/10.1007/11612704_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics