Skip to main content

Contour Matching Based on Belief Propagation

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Included in the following conference series:

Abstract

In this paper, we try to use graphical model based probabilistic inference methods to solve the problem of contour matching, which is a fundamental problem in computer vision. Specifically, belief propagation is used to develop the contour matching framework. First, an undirected loopy graph is constructed by treating each point of source contour as a graphical node. Then, the distances between the source contour points and the target contour points are used as the observation data, and supplied to this graphical model. During message transmission, we explicitly penalize two kinds of incorrect correspondences: many-to-one correspondence and cross correspondence. A final geometrical mapping is obtained by minimizing the energy function and maximizing a posterior for each node. Comparable experimental results show that better correspondences can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching. Tech. Rep. UU-CS-1999-27, Utrecht University, Holand (1999)

    Google Scholar 

  2. Grimson, E.: Object Recognition by Computer: The Role of Geometric Constraints. MIT Press, Cambridge (1990)

    Google Scholar 

  3. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  4. Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), Hilton Head Island, SC, USA, vol. 2, pp. 44–51 (2000)

    Google Scholar 

  5. Rangarajan, A., Coughlan, J., Yuille, A.L.: A bayesian network framework for relational shape matching. In: Proc. of IEEE Int. Conf. on Computer Vision, Paris, France, pp. 671–678 (2003)

    Google Scholar 

  6. Coughlan, J.M., Ferreira, S.J.: Finding deformable shapes using loopy belief propagation. In: Proc. of European Conf. on Computer Vision, Copenhagen, Denmark, pp. 453–468 (2002)

    Google Scholar 

  7. Milios, E., Petrakis, E.: Shape retrieval based on dynamic programming. IEEE Trans. on Image Processing 9, 141–147 (2000)

    Article  Google Scholar 

  8. Scott, C., Nowak, R.: Robust contour matching via the order preserving assignment problem (2004), http://www.stat.rice.edu/cscott/pubs/copap.pdf

  9. Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31, 983–1001 (1998)

    Article  Google Scholar 

  10. Luo, B., Hancock, E.R.: Structural graph matching using the em algorithm and singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1120–1136 (2001)

    Article  Google Scholar 

  11. Srisuk, S., Tamsri, M., Fooprateepsiri, R., et al.: A new shape matching measure for nonlinear distorted object recognition. In: Proc. of Digital Image Computing: Techniques and Applications, Sydney, Australia, pp. 339–348 (2003)

    Google Scholar 

  12. Frenkel, M., Basri, R.: Curve matching using the fast marching method. In: Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Lisbon, Portugal, pp. 35–51 (2003)

    Google Scholar 

  13. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. Pattern Analysis and Machine Intelligence 26, 550–571 (2004)

    Article  Google Scholar 

  14. Grauman, K., Darrell, T.: Fast contour matching using approximate earth mover’s distance. In: CVPR, Washington DC, USA, pp. 220–227 (2004)

    Google Scholar 

  15. Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Trans. on Information Theory 47, 736–744 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Thayananthan, A., Stenger, B., Torr, P.H.S., et al.: Shape context and chamfer matching in cluttered scenes. In: CVPR, Madison Wisconsin, pp. 127–133 (2003)

    Google Scholar 

  17. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. In: CVPR, Washington DC, USA, pp. 261–268 (2004)

    Google Scholar 

  18. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publisher, San Francisco (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiang, S., Nie, F., Zhang, C. (2006). Contour Matching Based on Belief Propagation. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_49

Download citation

  • DOI: https://doi.org/10.1007/11612704_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics