Abstract
We present a stereo vision based global self-localization strategy for tiny autonomous mobile robots in a well-known dynamic environment. Global localization is required for an initial startup or when the robot loses track of its pose during navigation. Existing approaches are based on dense range scans, active beacon systems, artificial landmarks, bearing measurements using omni-directional cameras or bearing/range calculation using single frontal cameras, while we propose feature based stereo vision system for range calculation. Location of the robot is estimated using range measurements with respect to distinct landmarks such as color transitions, corners, junctions and line intersections. Unlike methods based on angle measurement, this method requires only two distinct landmarks. Simulation results show that robots can successfully localize themselves whenever two distinct landmarks are observed. As such marked minimization of landmarks for vision based self-localization of robots has been achieved.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borenstein, J., Everett, H.R., Feng, L.: Navigating Mobile Robots: Systems and Techniques. A. K. Peters, Ltd, Stanford (1996)
Iocchi, L., Nardi, D.: Hough Localization for mobile robots in polygonal environments. Robotics and Autonomous Systems 40, 43–58 (2002)
Enderle, S., Ritter, M., Fox, D., Sablatnög, S., Kraetzschmar, G., Palm, G.: Soccer robot localization using sporadic visual features. In: E.P., et al. (ed.) International Conference on Intelligent Autonomous Systems 6 (IAS-6), pp. 959–966 (2000)
Adorni, G., Cagnoni, S., Enderle, S., Kraetzschmar, G.K.: Vision-based localization for mobile robots. Robotics and Autonomous Systems 36, 103–119 (2001)
Motomura, A., Matsuoka, T., Hasegawa, T.: Self-localization method using two landmarks and dead reckoning for autonomous mobile soccer robots. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS, vol. 3020, pp. 526–533. Springer, Heidelberg (2004)
Adorni, G., Cagnoni, S., Mordonini, M.: Landmark-based robot self-localization: a case study for the robocup goal-keeper. In: Proceedings of the International Conference on Information Intelligence and Systems, pp. 164–171 (1999)
de Jong, F., Caarls, J., Bartelds, R., Jonker, P.: A two-tiered approach to self-localization. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS, vol. 2377, pp. 405–410. Springer, Heidelberg (2002)
Tehrani, A.F., Rojas, R., Moballegh, H.R., Hosseini, I., Amini, P.: Analysis by synthesis, a novel method in mobile robot self-localization. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 586–593. Springer, Heidelberg (2005)
Utz, H., Neubeck, A., Mayer, G., Kraetzschmar, G.: Improving vision-based self-localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 25–40. Springer, Heidelberg (2003)
Christensen, H.I., Kirkeby, N.O., Kristensen, S., Knudsen, L.: Model-driven vision for in-door navigation. Robotics and Autonomous Systems 12, 199–207 (1994)
Gutmann, J., Schlegel, C.: Amos: Comparison of scan matching approaches for self-localization in indoor environments. In: 1st Euro micro Workshop on Advanced Mobile Robots. IEEE Computer Society Press, Los Alamitos (1996)
Grisetti, G., Iocchi, L., Nardi, D.: Global Hough localization for mobile robots in polygonal environments. In: IEEE International Conference on Robotics and Automation (ICRA 2002), pp. 353–358 (2002)
Marques, C.F., Lima, P.U.: A localization method for a soccer robot using a vision-based omni-directional sensor. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS, vol. 2109, pp. 96–107. Springer, Heidelberg (2001)
Duda, R., Hart, P.: Use of the Hough transformation to detect lines and curves in the pictures. Communications of the ACM 15, 11–15 (1972)
Stroupe, A.W., Sikorski, K., Balch, T.: Constraint-based landmark localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 8–24. Springer, Heidelberg (2003)
Bandlow, T., Klupsch, M., Hanek, R., Schmitt, T.: Fast image segmentation, object recognition, and localization in a roboCup scenario. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 174–185. Springer, Heidelberg (2000)
Choi, W., Ryu, C., Kim, H.: Navigation of a mobile robot using mono-vision and mono-audition. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 1999), vol. 4, pp. 686–691 (1999)
Herrero-Pérez, D., Martínez-Barberá, H., Saffiotti, A.: Fuzzy self-localization using natural features in the four-legged league. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 110–121. Springer, Heidelberg (2005)
Nickerson, S.B., Jasiobedzki, P., Wilkes, D., Jenkin, M., Milios, E., Tsotsos, J., Jepson, A., Bains, O.N.: The ark project: Autonomous mobile robots for known industrial environments. Robotics and Autonomous Systems 25, 83–104 (1998)
Bais, A., Sablatnig, R., Novak, G.: Line-based landmark recognition for self-localization of soccer robots. In: IEEE International Conference on Emerging Technologies (ICET 2005), Islamabad, Pakistan, pp. 132–137 (2005)
Novak, G., Mahlknecht, S.: TINYPHOON a tiny autonomous mobile robot. In: IEEE International Symposium on Industrial Electronics (ISIE 2005), pp. 1533–1538 (2005)
Sugihara, K.: Some location problems for robot navigation using a single camera. Computer Vision, Graphics, and Image Processing 42, 112–129 (1988)
Sutherland, K.T., Thompson, B.W.: Inexact navigation. In: IEEE International Conference on Robotics and Automation (ICRA 1993), pp. 1–7 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bais, A., Sablatnig, R. (2006). Landmark Based Global Self-localization of Mobile Soccer Robots. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_84
Download citation
DOI: https://doi.org/10.1007/11612704_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31244-4
Online ISBN: 978-3-540-32432-4
eBook Packages: Computer ScienceComputer Science (R0)