Skip to main content

Landmark Based Global Self-localization of Mobile Soccer Robots

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Included in the following conference series:

Abstract

We present a stereo vision based global self-localization strategy for tiny autonomous mobile robots in a well-known dynamic environment. Global localization is required for an initial startup or when the robot loses track of its pose during navigation. Existing approaches are based on dense range scans, active beacon systems, artificial landmarks, bearing measurements using omni-directional cameras or bearing/range calculation using single frontal cameras, while we propose feature based stereo vision system for range calculation. Location of the robot is estimated using range measurements with respect to distinct landmarks such as color transitions, corners, junctions and line intersections. Unlike methods based on angle measurement, this method requires only two distinct landmarks. Simulation results show that robots can successfully localize themselves whenever two distinct landmarks are observed. As such marked minimization of landmarks for vision based self-localization of robots has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borenstein, J., Everett, H.R., Feng, L.: Navigating Mobile Robots: Systems and Techniques. A. K. Peters, Ltd, Stanford (1996)

    MATH  Google Scholar 

  2. Iocchi, L., Nardi, D.: Hough Localization for mobile robots in polygonal environments. Robotics and Autonomous Systems 40, 43–58 (2002)

    Article  Google Scholar 

  3. Enderle, S., Ritter, M., Fox, D., Sablatnög, S., Kraetzschmar, G., Palm, G.: Soccer robot localization using sporadic visual features. In: E.P., et al. (ed.) International Conference on Intelligent Autonomous Systems 6 (IAS-6), pp. 959–966 (2000)

    Google Scholar 

  4. Adorni, G., Cagnoni, S., Enderle, S., Kraetzschmar, G.K.: Vision-based localization for mobile robots. Robotics and Autonomous Systems 36, 103–119 (2001)

    Article  MATH  Google Scholar 

  5. Motomura, A., Matsuoka, T., Hasegawa, T.: Self-localization method using two landmarks and dead reckoning for autonomous mobile soccer robots. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS, vol. 3020, pp. 526–533. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Adorni, G., Cagnoni, S., Mordonini, M.: Landmark-based robot self-localization: a case study for the robocup goal-keeper. In: Proceedings of the International Conference on Information Intelligence and Systems, pp. 164–171 (1999)

    Google Scholar 

  7. de Jong, F., Caarls, J., Bartelds, R., Jonker, P.: A two-tiered approach to self-localization. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS, vol. 2377, pp. 405–410. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Tehrani, A.F., Rojas, R., Moballegh, H.R., Hosseini, I., Amini, P.: Analysis by synthesis, a novel method in mobile robot self-localization. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 586–593. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Utz, H., Neubeck, A., Mayer, G., Kraetzschmar, G.: Improving vision-based self-localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 25–40. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Christensen, H.I., Kirkeby, N.O., Kristensen, S., Knudsen, L.: Model-driven vision for in-door navigation. Robotics and Autonomous Systems 12, 199–207 (1994)

    Article  Google Scholar 

  11. Gutmann, J., Schlegel, C.: Amos: Comparison of scan matching approaches for self-localization in indoor environments. In: 1st Euro micro Workshop on Advanced Mobile Robots. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  12. Grisetti, G., Iocchi, L., Nardi, D.: Global Hough localization for mobile robots in polygonal environments. In: IEEE International Conference on Robotics and Automation (ICRA 2002), pp. 353–358 (2002)

    Google Scholar 

  13. Marques, C.F., Lima, P.U.: A localization method for a soccer robot using a vision-based omni-directional sensor. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS, vol. 2109, pp. 96–107. Springer, Heidelberg (2001)

    Google Scholar 

  14. Duda, R., Hart, P.: Use of the Hough transformation to detect lines and curves in the pictures. Communications of the ACM 15, 11–15 (1972)

    Article  Google Scholar 

  15. Stroupe, A.W., Sikorski, K., Balch, T.: Constraint-based landmark localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 8–24. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Bandlow, T., Klupsch, M., Hanek, R., Schmitt, T.: Fast image segmentation, object recognition, and localization in a roboCup scenario. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 174–185. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Choi, W., Ryu, C., Kim, H.: Navigation of a mobile robot using mono-vision and mono-audition. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 1999), vol. 4, pp. 686–691 (1999)

    Google Scholar 

  18. Herrero-Pérez, D., Martínez-Barberá, H., Saffiotti, A.: Fuzzy self-localization using natural features in the four-legged league. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 110–121. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Nickerson, S.B., Jasiobedzki, P., Wilkes, D., Jenkin, M., Milios, E., Tsotsos, J., Jepson, A., Bains, O.N.: The ark project: Autonomous mobile robots for known industrial environments. Robotics and Autonomous Systems 25, 83–104 (1998)

    Article  Google Scholar 

  20. Bais, A., Sablatnig, R., Novak, G.: Line-based landmark recognition for self-localization of soccer robots. In: IEEE International Conference on Emerging Technologies (ICET 2005), Islamabad, Pakistan, pp. 132–137 (2005)

    Google Scholar 

  21. Novak, G., Mahlknecht, S.: TINYPHOON a tiny autonomous mobile robot. In: IEEE International Symposium on Industrial Electronics (ISIE 2005), pp. 1533–1538 (2005)

    Google Scholar 

  22. Sugihara, K.: Some location problems for robot navigation using a single camera. Computer Vision, Graphics, and Image Processing 42, 112–129 (1988)

    Article  Google Scholar 

  23. Sutherland, K.T., Thompson, B.W.: Inexact navigation. In: IEEE International Conference on Robotics and Automation (ICRA 1993), pp. 1–7 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bais, A., Sablatnig, R. (2006). Landmark Based Global Self-localization of Mobile Soccer Robots. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_84

Download citation

  • DOI: https://doi.org/10.1007/11612704_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics