Skip to main content

Bio-inspired Computing Machines with Self-repair Mechanisms

  • Conference paper
Biologically Inspired Approaches to Advanced Information Technology (BioADIT 2006)

Abstract

Developmental biology requires three principles of organization characteristic of living organisms: multicellular architecture, cellular division, and cellular differentiation. Implemented in silicon according to these principles, new computing machines become able to grow, to self-replicate, and to self-repair. The introduction of a new algorithm for cellular division, the so-called Tom Thumb algorithm, necessitates new self-repair mechanisms of structural configuration, functional configuration, microscopic cicatrization, and macroscopic regeneration. The details of these mechanisms constitutes the core of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Canham, R., Tyrrell, A.M.: An embryonic array with improved efficiency and fault tolerance. In: Lohn, J., et al. (eds.) Proceedings of the NASA/DoD Conference on Evolvable Hardware (EH 2003), pp. 265–272. IEEE Computer Society, Los Alamitos (2003)

    Chapter  Google Scholar 

  2. de Garis, H.: Evolvable hardware: Genetic programming of a Darwin machine. In: Albrecht, R.F., Reeves, C.R., Steele, N.C. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 441–449. Springer, Heidelberg (1993)

    Google Scholar 

  3. Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280(5370), 1716–1721 (1998)

    Article  Google Scholar 

  4. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Toward robust integrated circuits: The Embryonics approach. Proceedings of the IEEE 88(4), 516–541 (2000)

    Article  Google Scholar 

  5. Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Embryonics machines that divide and differentiate. In: Ijspert, A.J., Mange, D., Murata, M., Nishio, S. (eds.) Biologically Inspired Approaches to Advanced Information Technology. Proceedings of The First International Workshop Bio-ADIT 2004. LNCS, vol. 3141, pp. 201–216. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Self-replicating loop with universal construction. Physica D 191(1-2), 178–192 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pearson, H.: The regeneration gap. Nature 414(6), 388–390 (2001)

    Article  MathSciNet  Google Scholar 

  8. Prodan, L., Udrescu, M., Vladutin, M.: Survivability of embryonic memories: Analysis and design principles. In: Zebulum, R.S., et al. (eds.) Proceedings of the NASA/DoD Conference on Evolvable Hardware (EH 2004), pp. 130–137. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  9. Stauffer, A., Mange, D., Tempesti, G.: Embryonic machines that grow, self- replicate and self-repair. In: Lohn, J., et al. (eds.) Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware (EH 2005), pp. 290–293. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  10. Wolpert, L.: The Triumph of the Embryo. Oxford University Press, Oxford (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stauffer, A., Mange, D., Tempesti, G. (2006). Bio-inspired Computing Machines with Self-repair Mechanisms. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2006. Lecture Notes in Computer Science, vol 3853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11613022_13

Download citation

  • DOI: https://doi.org/10.1007/11613022_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31253-6

  • Online ISBN: 978-3-540-32438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics