Abstract
Developmental biology requires three principles of organization characteristic of living organisms: multicellular architecture, cellular division, and cellular differentiation. Implemented in silicon according to these principles, new computing machines become able to grow, to self-replicate, and to self-repair. The introduction of a new algorithm for cellular division, the so-called Tom Thumb algorithm, necessitates new self-repair mechanisms of structural configuration, functional configuration, microscopic cicatrization, and macroscopic regeneration. The details of these mechanisms constitutes the core of this paper.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Canham, R., Tyrrell, A.M.: An embryonic array with improved efficiency and fault tolerance. In: Lohn, J., et al. (eds.) Proceedings of the NASA/DoD Conference on Evolvable Hardware (EH 2003), pp. 265–272. IEEE Computer Society, Los Alamitos (2003)
de Garis, H.: Evolvable hardware: Genetic programming of a Darwin machine. In: Albrecht, R.F., Reeves, C.R., Steele, N.C. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 441–449. Springer, Heidelberg (1993)
Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280(5370), 1716–1721 (1998)
Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Toward robust integrated circuits: The Embryonics approach. Proceedings of the IEEE 88(4), 516–541 (2000)
Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Embryonics machines that divide and differentiate. In: Ijspert, A.J., Mange, D., Murata, M., Nishio, S. (eds.) Biologically Inspired Approaches to Advanced Information Technology. Proceedings of The First International Workshop Bio-ADIT 2004. LNCS, vol. 3141, pp. 201–216. Springer, Heidelberg (2004)
Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Self-replicating loop with universal construction. Physica D 191(1-2), 178–192 (2004)
Pearson, H.: The regeneration gap. Nature 414(6), 388–390 (2001)
Prodan, L., Udrescu, M., Vladutin, M.: Survivability of embryonic memories: Analysis and design principles. In: Zebulum, R.S., et al. (eds.) Proceedings of the NASA/DoD Conference on Evolvable Hardware (EH 2004), pp. 130–137. IEEE Computer Society, Los Alamitos (2004)
Stauffer, A., Mange, D., Tempesti, G.: Embryonic machines that grow, self- replicate and self-repair. In: Lohn, J., et al. (eds.) Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware (EH 2005), pp. 290–293. IEEE Computer Society, Los Alamitos (2005)
Wolpert, L.: The Triumph of the Embryo. Oxford University Press, Oxford (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stauffer, A., Mange, D., Tempesti, G. (2006). Bio-inspired Computing Machines with Self-repair Mechanisms. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2006. Lecture Notes in Computer Science, vol 3853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11613022_13
Download citation
DOI: https://doi.org/10.1007/11613022_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31253-6
Online ISBN: 978-3-540-32438-6
eBook Packages: Computer ScienceComputer Science (R0)