Abstract
Mining frequent queries often requires the repeated execution of some extraction algorithm for different values of the support, as well as for different source datasets. This is an expensive process, even if we use the best existing algorithms. Hence the need for iterative mining, whereby mining results already obtained are re-used to accelerate subsequent steps in the mining process.
In this paper, we present an approach for the iterative mining of frequent queries. Our approach is based on the notion of mining context, where a mining context is a set of queries over the same schema. We define operations on mining contexts, based on the standard relational algebra, and we also introduce new operators, one of which for computing frequent queries.
We first study the properties of the operators, then we consider particular mining contexts using biases for which frequent queries can be computed using any level-wise algorithm. Iterative mining is obtained by combining these particular contexts using our set of operations. We have implemented our approach and conducted experiments that show its efficiency in mining frequent queries.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 309–328. AAAI-MIT Press (1996)
Botta, M., Meo, R., Sapino, M.L.: Incremental execution of the mine rule operator. Technical Report RT66-2002, University of Turin, Turin (May 2002)
Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational databases. In: Ninth ACM Symposium on Theory of Computing, pp. 77–90 (1977)
Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. In: Data Mining and Knowledge Discovery, vol. 3, pp. 7–36. Kluwer Academic Publishers, Dordrecht (1999)
Diop, C.T.: Etude et mise en oeuvre des aspects itératifs de l’extraction de règles d’association dans une base de données. PhD thesis, Université de Tours, France (2003)
Diop, C.T., Giacometti, A., Laurent, D., Spyratos, N.: Composition of mining contexts for efficient extraction of association rules. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 106–123. Springer, Heidelberg (2002)
Giacometti, A., Laurent, D., Diop, C.T.: Condensed representations of sets of mining queries. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682, pp. 250–269. Springer, Heidelberg (2004)
Giacometti, A., Laurent, D., Diop, C.T., Spyratos, N.: Mining from views: An incremental approach. International Journal Information Theories & Applications 9 (Techn. Report LI, Université de Tours, France) (2002)
Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: Dmql: A data mining query language for relational databases. In: SIGMOD Workshop DMKD 1996, pp. 27–34 (1996)
Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Communications of the ACM 39, 58–64 (1996)
Kamber, M., Han, J., Chiang, J.: Metarule-guided mining of multi-dimensional association rules using data cubes. In: International Conference on Data Mining and Knowledge Discovery (KDD 1997), Newport Beach, USA, pp. 207–210 (1997)
Lee, S.D., De Raedt, L.: An algebra for inductive query evaluation. In: IEEE ICDM, pp. 147–154 (2003)
Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)
Meo, R., Psaila, G., Ceri, S.: A new sql-like operator for mining association rules. In: 22nd VLDB Conf., pp. 122–133 (1996)
Morzy, T., Wojciechowski, M., Zakrzewicz, M.: Materialized data mining views. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 65–74. Springer, Heidelberg (2000)
Nag, B., Deshpande, P., De Witt, D.J.: Using a knowledge cache for interactive discovery of association rules. In: 5th ACM SIGKDD Conference, pp. 244–253 (1999)
Nag, B., Deshpande, P., De Witt, D.J.: Caching for multi-dimensional data mining queries. In: Systemics, Cybernetics and Informatics (SCI) (2001)
De Raedt, L.: A perspective on inductive databases. SIGKDD Explor. Newsletter 4(2), 69–77 (2002)
Tsur, S., Ullman, J.D., Abiteboul, S., Clifton, C., Motwani, R., Nestorov, S., Rosenthal, A.: Query flocks: A generalization of association-rule mining. In: ACM SIGMOD Conference, pp. 1–12 (1998)
Ullman, J.D.: Principles of Databases and Knowledge-Base Systems, vol. 1. Computer Science Press, Rockville (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Diop, C.T., Giacometti, A., Laurent, D., Spyratos, N. (2006). Computation of Mining Queries: An Algebraic Approach. In: Boulicaut, JF., De Raedt, L., Mannila, H. (eds) Constraint-Based Mining and Inductive Databases. Lecture Notes in Computer Science(), vol 3848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11615576_6
Download citation
DOI: https://doi.org/10.1007/11615576_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31331-1
Online ISBN: 978-3-540-31351-9
eBook Packages: Computer ScienceComputer Science (R0)