Skip to main content

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results

  • Conference paper
Journal on Data Semantics V

Abstract

Ontologies have been created for many different subjects and by independent groups around the world. The nonexistence of a commonly accepted and used general purpose upper-ontology makes it difficult to integrate these ontologies through merge and alignment operations. The majority of the algorithms proposed so far rely on syntactic analysis, disregarding the structural properties of the source ontologies. In our previous work, we proposed an alignment method that considers the structural properties of an upper-ontology constructed using a thesaurus and Formal Concept Analysis technique (FCA). We also analyzed the FCA’s lattice structure and proposed a measure of similarity based on Tversky’s model, which allowed us to identify closely related concepts in different source ontologies. In this paper, we apply the alignment method to ontologies developed for a completely different domain, and enhance the solution by providing a navigational aid for the lattice. It is well known that one of the main drawbacks of the application of FCA is that the resulting lattice soon becomes cluttered when the number of objects and attributes increases. The proposed solution is based on hyperbolic visualization and on structural elements of the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berners-Lee, T.: Semantic web road map. Internal note, World Wide Web Consortium (1998), http://www.w3.org/DesignIssues/Semantic.html

  2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)

    Google Scholar 

  3. Stumme, G., Maedche, A.: Fca-merge: Bottom-up merging of ontologies. In: Proc. 17th Intl. Conf. on Artificial Intelligence (IJCAI 2001), Seattle, WA, USA, pp. 225–230 (2001)

    Google Scholar 

  4. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine learning approach. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 385–404. Springer, Heidelberg (2004)

    Google Scholar 

  5. Rodríguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Transactions on Knowledge and Data Engineering 15, 442–456 (2003)

    Article  Google Scholar 

  6. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Aquisition 5, 199–220 (1993)

    Article  Google Scholar 

  7. de Souza, K.X.S., Davis, J.: Aligning ontologies through formal concept analysis. In: Proceedings of The Sixth International Conference on Information Integration and Web Based Applications & Services (iiWAS2004), Jakarta, Indonesia, Austrian Computer Society (2004)

    Google Scholar 

  8. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets. Advanced Study Institute Series, vol. 83, pp. 445–470, C. Reidel, Dordrecht (1982)

    Google Scholar 

  9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    Google Scholar 

  10. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The Knowledge Engineering Review 18, 1–31 (2003)

    Article  Google Scholar 

  11. de Souza, K.X.S., Davis, J.: Using an aligned ontology to process user queries. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI), vol. 3192, pp. 44–53. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Chaudron, L., Maille, N., Boyer, M.: The cube lattice model and its applications. Applied Artificial Intelligence 17, 207–242 (2003)

    Article  Google Scholar 

  13. de Souza, K.X.S., Davis, J.: Aligning ontologies and evaluating concept similarities. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3291, pp. 1012–1029. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Tversky, A.: Features of Similarity. Psychological Review 84, 327–352 (1977)

    Article  Google Scholar 

  15. McGuinness, D.L., et al.: An environment for merging and testing large ontologies. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR2000: Principles of Knowledge Representation and Reasoning, pp. 483–493. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  16. Noy, N.F., Musen, M.: PROMPT: Algorithm and tool for automated ontology merging and alignment. In: Proceedings of the 7th Conference on Artificial Intelligence (AAAI 2000) and of the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI 2000, pp. 450–455. AAAI Press, Menlo Park (2000)

    Google Scholar 

  17. Chalupsky, H.: Ontomorph: A translation system for symbolic knowledge. In: Principles of Knowledge Representation and Reasoning, pp. 471–482 (2000)

    Google Scholar 

  18. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10, 334–350 (2001)

    Article  MATH  Google Scholar 

  19. Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowledge and Information Systems 6, 428–440 (2004)

    Article  Google Scholar 

  20. Compatangelo, E., Meisel, H.: Intelligent support to knowledge sharing through the articulation of class schemas. In: Proc. of the 6th Intl. Conf. on Knowledge- Based Intelligent Information & Engineering Systems(KES 2002), pp. 306–310. IOS Press, Amsterdam (2002)

    Google Scholar 

  21. Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hubner, S.: Ontology-based integration of information - a survey of existing approaches. In: Stuckenschmidt, H. (ed.) IJCAI 2001 Workshop: Ontologies and Information Sharing, pp. 108–117 (2001)

    Google Scholar 

  22. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.: Domain specific ontologies for semantic information brokering on the global information infrastructure. In: Proceedings of the 1st International Conference on Formal Ontology in Information Systems (FOIS 1998), pp. 269–283 (1998)

    Google Scholar 

  23. de Souza, K.X.S., Davis, J., Souza, M.I.F.: Organizing information for the agribusiness sector: Embrapa’s Information Agency. In: Proceedings of 2004 International Conference on Digital Archive Technologies, Taipei, Taiwan, Institute of Information Science - Academia Sinica, pp. 159–169 (2004)

    Google Scholar 

  24. Priss, U.: Formalizing botanical taxonomies. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 309–322. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Cole, R., Eklund, P.: Application of formal concept analysis to information retrieval using a hierarchically structured thesauris. In: Supplementary Proceedings of International Conference on Conceptual Structures, ICCS 1996, University of New South Wales, pp. 1–12 (1996)

    Google Scholar 

  26. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies on the semantic web. In: The Eleventh International WWW Conference, Hawaii, USA (2002)

    Google Scholar 

  27. Groh, B., Strahinger, S., Wille, R.: Toscana-systems based on thesauri. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 127–138. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  28. Becker, P., Hereth, J., Stumme, G.: ToscanaJ: An open source tool for qualitative data analysis. In: Duquenne, V., Ganter, B., Liquiere, M., Nguifo, E.M., Stumme, G. (eds.) Advances in Formal Concept Analysis for Knowledge Discovery in Databases. Proc. Workshop FCAKDD of the 15th European Conference on Artificial Intelligence (ECAI 2002), Lyon, France, July 23 (2002)

    Google Scholar 

  29. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. Journal on Knowledge and Data Engineering (KDE) 42, 189–222 (2002)

    Article  MATH  Google Scholar 

  30. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6, 24–43 (2000)

    Article  Google Scholar 

  31. Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In: Bauersfeld, P., Bennett, J., Lynch, G. (eds.) Proceedings of the Conference on Human Factors in Computing Systems, pp. 83–92. ACM Press, New York (1992)

    Google Scholar 

  32. Lamping, J., Rao, R., Pirolli, P.: A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In: Katz, I.R., Mack, R., Marks, L., Rosson, M.B., Nielsen, J. (eds.) Proceedings of the Conference on Human Factors in Computing Systems (CHI 1995), Denver, CO, USA, pp. 401–408. ACM Press, New York (1995)

    Chapter  Google Scholar 

  33. Munzner, T.: H3: laying out large directed graphs in 3d hyperbolic space. In: IEEE Symposium on Information Visualization (InfoVis 1997), pp. 2–10. IEEE, Los Alamitos (1997)

    Google Scholar 

  34. FAO (Food and Agriculture Organization of the United Nations): FAO (Food and Agriculture Organization of the United Nations), AGROVOC: Multilingual Agricultural Thesaurus FAO Rome (1995)

    Google Scholar 

  35. Mitra, P., Wiederhold, G., Kersten, M.L.: A Graph-Oriented Model for Articulation of Ontology Interdependencies. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 86–100. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  36. Heit, E.: Features of similarity and category-based induction. In: Proceedings of the Interdisciplinary Workshop on Categorization and Similarity, pp. 115–121. University of Edinburgh, Edinburgh (1997)

    Google Scholar 

  37. Goldstone, R.L., Kersten, A.: Concepts and caterogization. In: Healy, A., Proctor, R. (eds.) Comprehensive Handbook of Psychology, pp. 599–621. Wiley, New Jersey (2003)

    Google Scholar 

  38. Sloutsky, V.M.: The role of similarity in the development of categorization. TRENDS in Cognitive Sciences 7, 246–251 (2003)

    Article  Google Scholar 

  39. Tenenbaum, J.B., Griffiths, T.L.: Generalization, similarity, and bayesian inference. Behavioral and Brain Sciences 24, 629–640 (2001)

    Google Scholar 

  40. Gentner, D., Markman, A.B.: Structure mapping in analogy and similarity. American Psychologpist 52, 45–56 (1997)

    Article  Google Scholar 

  41. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  42. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using galois lattices. In: Paepcke, A. (ed.) Proceedings of the 8th Annual Conference on Object-Oriented Programming Systems, Languages and Applications, pp. 394–410. ACM Press, New York (1993)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Souza, K.X.S., Davis, J., de Medeiros Evangelista, S.R. (2006). Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results. In: Spaccapietra, S., Atzeni, P., Chu, W.W., Catarci, T., Sycara, K.P. (eds) Journal on Data Semantics V. Lecture Notes in Computer Science, vol 3870. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11617808_8

Download citation

  • DOI: https://doi.org/10.1007/11617808_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31426-4

  • Online ISBN: 978-3-540-31427-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics