Abstract
In this paper we introduce the class of semiprimitive Fermat curves, for which Weil-Serre’s bound can be improved using Moreno-Moreno p-adic techniques. The basis of the improvement is a technique for giving the exact divisibility for Fermat curves, by reducing the problem to a simple finite computation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Moreno, O., Moreno, C.J.: A p-adic Serre Bound. Finite Fields and Their Applications 4, 241–244 (1998)
Moreno, O., Moreno, C.J.: The MacWilliams-Sloane Conjecture on the Tightness of the Carlitz-Uchiyama Bound and the Weights of Duals of BCH Codes. IEEE Trans. Inform. Theory 4(6), 1894–1907 (1994)
Moreno, O., Shum, K., Castro, F.N., Kumar, P.V.: Tight Bounds for Chevalley-Warning-Ax Type Estimates, with Improved Applications. Proc. of the London Mathematical Society 4, 201–217 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castro, F.N., Gomez, E., Moreno, O. (2006). A Class of Fermat Curves for which Weil-Serre’s Bound Can Be Improved. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2006. Lecture Notes in Computer Science, vol 3857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11617983_12
Download citation
DOI: https://doi.org/10.1007/11617983_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31423-3
Online ISBN: 978-3-540-31424-0
eBook Packages: Computer ScienceComputer Science (R0)