Abstract
Most approaches to the formal analysis of cryptography protocols make the perfect cryptographic assumption, which entails for example that there is no way to obtain knowledge about the plaintext pertaining to a ciphertext without knowing the key. Ideally, one would prefer to abandon the perfect cryptography hypothesis and reason about the computational cost of breaking a cryptographic scheme by achieving such goals as gaining information about the plaintext pertaining to a ciphertext without knowing the key. Such a view is permitted by non-standard computational models such as the Generic Model and the Random Oracle Model. Using the proof assistant Coq, we provide a machine-checked account of the Generic Model and the Random Oracle Model. We exploit this framework to prove the security of the ElGamal cryptosystem against adaptive chosen ciphertexts attacks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M., Needham, R.M.: Prudent engineering practice for cryptographic protocols. Transactions on Software Engineering 22(1), 6–15 (1996)
Barendregt, H., Geuvers, H.: Proof assistants using dependent type systems. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, ch. 18, pp. 1149–1238. Elsevier Publishing, Amsterdam (2001)
Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional Programming 13, 261–293 (2003)
Barthe, G., Cederquist, J., Tarento, S.: A Machine-Checked Formalization of the Generic Model and the Random Oracle Model. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 385–399. Springer, Heidelberg (2004)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)
Brown, D.: Generic Groups, Collision Resistance, and ECDSA (2002), Available from: http://eprint.iacr.org/2002/026/
Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0 (January 2004)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)
Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)
Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55(2), 165–172 (1994)
Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)
Schneier, B.: Applied Cryptography, 2nd edn. John Wiley & Sons, Chichester (1996)
Schnorr, C.-P.: Security of Blind Discrete Log Signatures against Interactive Attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12. Springer, Heidelberg (2001)
Schnorr, C.-P., Jakobsson, M.: Security of Signed ElGamal Encryption. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer, Heidelberg (2000)
Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)
Smart, N.: The Exact Security of ECIES in the Generic Group Model. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 73–84. Springer, Heidelberg (2001)
Stern, J.: Why provable security matters? In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 449–461. Springer, Heidelberg (2003)
Tarento, S.: Machine-checked security proofs of cryptographic signature schemes. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 140–158. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barthe, G., Tarento, S. (2006). A Machine-Checked Formalization of the Random Oracle Model. In: Filliâtre, JC., Paulin-Mohring, C., Werner, B. (eds) Types for Proofs and Programs. TYPES 2004. Lecture Notes in Computer Science, vol 3839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11617990_3
Download citation
DOI: https://doi.org/10.1007/11617990_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31428-8
Online ISBN: 978-3-540-31429-5
eBook Packages: Computer ScienceComputer Science (R0)