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Abstract. We extend the open answer set semantics for programs with gener-
alized literals. Such extended programs (EPs) have interesting properties, e.g.
the ability to express infinity axioms - EPs that have but infinite answer sets.
However, reasoning under the open answer set semantics, in particular satisfia-
bility checking of a predicate w.r.t. a program, is already undecidable for pro-
grams without generalized literals. In order to regain decidability, we restrict the
syntax of EPs such that both rules and generalized literals are guarded. Via a
translation to guarded fixed point logic (µGF), in which satisfiability checking
is 2-EXPTIME-complete, we deduce 2-EXPTIME-completeness of satisfiability
checking in such guarded EPs (GEPs). Bound GEPs are restricted GEPs with
EXPTIME-complete satisfiability checking, but still sufficiently expressive to op-
timally simulate computation tree logic (CTL). We translate Datalog LITE pro-
grams to GEPs, establishing equivalence of GEPs under an open answer set se-
mantics, alternation-free µGF, and Datalog LITE. Finally, we discuss ω-restricted
logic programs under an open answer set semantics.

1 Introduction

In closed answer set programming (ASP) [6], a program consisting of a rule p(X ) ←
not q(X ) and a fact q(a) is grounded with the program’s constant a, yielding p(a) ←
not q(a) and q(a). This program has one answer set {q(a)} such that one concludes
that the predicate p is not satisfiable, i.e. there is no answer set of the program that
contains a literal with predicate p. Adding more constants to the program could make
p satisfiable, e.g., in the absence of a deducible q(b), one has p(b). However, in the
context of conceptual modeling, such as designing database schema constraints, this
implicit dependence on constants in the program in order to reach sensible conclusions,
i.e. the closedness of reasoning, is infeasible. One wants to be able to test satisfiability
of a predicate p in a schema independent of any associated data.

For answer set programming, this problem was solved in [7], where k-belief sets
are the answer sets of a program that is extended with k extra constants. We extended
this idea, e.g. in [13], by allowing for arbitrary, thus possibly infinite, universes. Open
answer sets are pairs (U, M) with M an answer set of the program grounded with U .
The above program has an open answer set ({x, a}, {q(a), p(x)}) where p is satisfiable.
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In this paper, we extend programs with generalized literals, resulting in extended
programs (EPs). A generalized literal is a first-order formula of the form ∀Y · φ ⇒ ψ
where Y is a sequence of variables, φ is a finite boolean formula and ψ is an atom.
Intuitively, such a generalized literal is true in an open interpretation (U, M) if for all
substitutions [Y | y], y in U , such that φ[Y | y] is true in M , ψ[Y | y] is true
in M .

Generalized literals ∀Y · φ ⇒ ψ, with φ an atom instead of a boolean formula,
were introduced in Datalog1 with the language Datalog LITE [8]: stratified Datalog
with generalized literals, where rules are monadic or guarded, and under an appro-
priate extension of the least fixed point semantics. In open answer set programming
(OASP), we define a reduct that removes the generalized literals. E.g., a rule r : ok ←
∀X · critical(X ) ⇒ work(X ) expresses that a system is OK if all critical devices are
functioning: the GLi-reduct (generalized literal reduct) of such a rule for an open in-
terpretation ({x0, . . .}, M) where M contains critical(xi ) for even i, contains a rule
r′ : ok ← work(x0 ),work(x2 ), . . ., indicating that the system is OK if the critical
devices x0, x2, . . . are working. The GLi-reduct does not contain generalized literals
and one can apply the normal answer set semantics, modified to take into account the
infinite body.

Just like it is not feasible to introduce all relevant constants in a program to ensure
correct conceptual reasoning, it is not feasible, not even possible, to write knowledge
directly as in r′ for it has an infinite body. Furthermore, even in the presence of a finite
universe, generalized literals allow for a more robust representation of knowledge than
would be possible without them. E.g., with critical devices y1 and y2, a rule s : ok ←
work(y1 ),work(y2 ) does the job as good as r (and in fact s is the GLi-reduct of r), but
adding new critical devices, implies revisiting s and replacing it by a rule that reflects
the updated situation. Not only is this cumbersome, it may well be impossible as s
contains no explicit reference to critical devices, and the knowledge engineer may not
have a clue as to which rules to modify.

Characteristic about (O)ASP is its treatment of negation as failure (naf): one guesses
an interpretation for a program, removes naf by computing the GL-reduct, calculates
the iterated fixed point of this reduct, and checks whether this fixed point equals the
initial interpretation. In [14], these external manipulations, i.e. not expressible in the
language of programs itself, were compiled into fixed point logic (FPL) [11], i.e. into
an extension of first-order logic with fixed point formulas. We will show how to modify
the FPL translation to take into account generalized literals.

Satisfiability checking w.r.t. arbitrary EPs, even without generalized literals, under
the open answer set semantics is undecidable (e.g. the domino problem can be reduced
to it), and satisfiability checking in FPL is as well, as it is an extension of the unde-
cidable first-order logic. Thus, with the FPL translation, we have a mapping from one
undecidable framework into another undecidable framework. This is interesting in its
own right, as it provides a characterization of an answer set semantics in FPL. But more
interesting, is the deployment of the translation in order to identify decidable subclasses
of EPs: if the FPL translation of a class of EPs falls into a decidable fragment of FPL,
this class of EPs is decidable.

1 The extension of logic programming syntax with first-order formulas dates back to [17].
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Guarded fixed point logic (µGF) [11] is such a decidable fragment of FPL that is able
to express fixed point formulas. It restricts the use of quantified variables by demanding
that they are guarded by an atom. We restrict EPs, resulting in guarded EPs (GEPs),
such that all variables in a rule appear in an atom in the positive body and all generalized
literals are guarded, where a generalized literal is guarded, basically, if it can be written
as a guarded formula in µGF. The FPL translation of GEPs then falls into the µGF
fragment, yielding a 2-EXPTIME upper complexity bound for satisfiability checking.
Together with the 2-EXPTIME-completeness of guarded programs without generalized
literals from [14], this establishes 2-EXPTIME-completeness for satisfiability checking
w.r.t. GEPs. As a consequence, adding generalized literals to a guarded program does
not increase the complexity of reasoning. We further illustrate the expressiveness of
(bound) GEPs by simulating reasoning in computational tree logic (CTL) [4], a logic
for expressing temporal knowledge.

Finally, we reduce Datalog LITE reasoning, without monadic rules, to reasoning with
GEPs. In particular, we prove a generalization of the well-known result from [6] that
the unique answer set of a stratified program coincides with its least fixed point model:
for a universe U , the unique open answer set (U, M) of a stratified Datalog program
with generalized literals is identical2 to its least fixed point model with input structure
id(U), the identity relation on U . Furthermore, the Datalog LITE simulation, together
with the reduction of GEPs to alternation-free3 µGF, as well as the equivalence of
alternation-free µGF and Datalog LITE [8], lead to the conclusion that alternation-free
µGF, Datalog LITE, and OASP with GEPs, are equivalent, i.e. their satisfiability check-
ing problems can be polynomially reduced to one another.

GEPs are just as expressive as Datalog LITE, however, from a knowledge represen-
tation viewpoint, GEPs allow for a compact expression of circular knowledge. E.g., the
omni-present construction with rules a(X ) ← not b(X ) and b(X ) ← not a(X ) is not
stratified and cannot be (directly) expressed in Datalog LITE. The reduction to Datalog
LITE does indicate that negation as failure under the (open) answer set semantics is not
that special regarding expressiveness, but can be regarded as convenient semantic sugar.

The remainder of the paper is organized as follows. After extending the open answer
set semantics to support generalized literals in Section 2, we give the FPL translation
in Section 3. Section 4 defines GEPs, proves a 2-EXPTIME complexity upper bound for
satisfiability checking, and concludes with a CTL simulation. Section 5 describes a sim-
ulation of Datalog LITE, without monadic rules, yielding equivalence of alternation-free
µGF, Datalog LITE, and GEPs. Section 6 describes the relationship with ω-restricted pro-
grams. Section 7 contains conclusions and directions for further research. Due to space
restrictions, proofs and further related work have been omitted; the former can be found
in http://tinf2.vub.ac.be/ sheymans/tech/goasp-gl.ps.gz, for the latter we refer to [14] and
the references therein.

2 Open Answer Set Programming with Generalized Literals

A term t is a constant or a variable, where the former is denoted with a, b, . . . and the
latter with X, Y, . . . A k-ary atom is of the form p(t) for a sequence of terms t =

2 Modulo equality atoms, which are implicit in OASP, but explicit in Datalog LITE.
3 µGF without nested fixed point variables in alternating least and greatest fixed point formulas.
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t1, . . . , tk, 0 ≤ k < ω4, and a k-ary predicate symbol p. A literal is an atom p(t)
or a naf-atom not p(t) for an atom p(t).5 The positive part of a set of literals α is
α+ = {p(t) | p(t) ∈ α} and the negative part of α is α− = {p(t) | not p(t) ∈ α},
i.e. the positive part of a set of literals are the atoms, the negative part are the naf-atoms
without the not symbol. We assume the existence of binary predicates = and �=, where
t = s is considered as an atom and t �= s as not t = s. E.g. for α = {X �= Y, Y = Z},
we have α+ = {Y = Z} and α− = {X = Y }. A regular atom is an atom that is not
an equality atom. For a set X of atoms, not X = {not l | l ∈ X}.

A generalized literal is a first-order formula of the form ∀Y · φ ⇒ ψ, where φ is
a finite boolean formula of atoms (i.e. using ¬, ∨, and ∧) and ψ is an atom; we call φ
the antecedent and ψ the consequent. We refer to literals and generalized literals as ex-
tended literals. For a set of extended literals α, αx ≡ {l | l generalized literal in α}, the
set of generalized literals in α. We extend α+ and α− for extended literals as follows:
α+ = (α\αx)+ and α− = (α\αx)−; thus α = α+ ∪ not α− ∪ αx.

An extended program (EP) is a countable set of rules α ← β, where α is a finite set
of literals, |α+| ≤ 1, β is a countable6 set of extended literals, and ∀t, s · t = s �∈ α+,
i.e. α contains at most one positive atom, and this atom cannot be an equality atom. The
set α is the head of the rule and represents a disjunction7 of literals, while β is called
the body and represents a conjunction of extended literals. If α = ∅, the rule is called a
constraint. Free rules are rules of the form q(t) ∨ not q(t) ← for a tuple t of terms;
they enable a choice for the inclusion of atoms. We call a predicate p free if there is
a free rule p(t) ∨ not p(t) ← . Literals are ground if they do not contain variables,
generalized literals are ground if they do not contain free variables, and rules and EPs
are ground if all extended literals in it are ground.

For an EP P , let cts(P ) be the constants in P , and preds(P ) its predicates. For a
(generalized) literal l, we define vars(l) as the (free) variables in l. For a rule r, we
define vars(r) ≡ ∪{vars(l) | l extended literal in r}. Let BP be the set of regular
ground atoms that can be formed from an EP P . An interpretation I of P is then any
subset of BP . For a ground regular atom p(t), we write I |= p(t) if p(t) ∈ I; for
an equality atom p(t) ≡ t = s, we have I |= p(t) if s and t are equal terms. We have
I |= not p(t) if I �|= p(t). We further extend this, by induction, for any boolean formula
of ground atoms. For such ground boolean formulas φ and ψ, we have I |= φ ∧ ψ iff
I |= φ and I |= ψ, I |= φ ∨ ψ iff I |= φ or I |= ψ, and I |= ¬φ iff I �|= φ. For a
set of ground literals X , we have I |= X iff I |= x for every x ∈ X . A ground rule
r : α ← β, not containing generalized literals, is satisfied w.r.t. I , denoted I |= r, if
I |= l for some l ∈ α whenever I |= β, i.e. r is applied whenever it is applicable. A
ground constraint ← β is satisfied w.r.t. I if I �|= β. For a ground program P without

4 We thus allow for 0-ary predicates, i.e. propositions.
5 We have no classical negation ¬, however, programs with ¬ can be reduced to programs with-

out it, see e.g. [16]. To be precise, we should then refer to stable models instead of answer
sets.

6 Thus the rules may have an infinite body.
7 The condition |α+| ≤ 1 ensures that the GL-reduct is non-disjunctive. This allows for the

definition of an immediate consequence operator, on which we rely in our proofs to make
the correspondence with FPL. In the presence of positive disjunction, the currently defined
operator does not suffice and it is not clear whether this can be fixed (and how).
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not and without generalized literals, an interpretation I of P is a model of P if I satisfies
every rule in P ; it is an answer set of P if I is subset minimal, i.e. there is no model I ′

of P with I ′ ⊂ I . For ground EPs P containing not but still without generalized literals,
the GL-reduct [6] w.r.t. I is defined as P I , where P I contains α+ ← β+ for α ← β in
P if I |= not β− and I |= α−. I is an answer set of a ground P without generalized
literals if I is an answer set of P I .

Example 1. Take the program P with rules p(a) ← not q(a) and q(a) ← not p(a).
Then P has 4 interpretations ∅, {p(a)}, {q(a)}, and {p(a), q(a)}. The GL-reduct of P
w.r.t. ∅ is {p(a) ←; q(a) ←} which has {p(a), q(a)} as its minimal model, and thus
∅ is not an answer set. The GL-reduct of P w.r.t. {p(a), q(a)} is ∅ which has ∅ as its
minimal model, and thus {p(a), q(a)} is not an answer set. The GL-reduct of P w.r.t.
{p(a)} is {p(a) ←} which has {p(a)} as its minimal model, making {p(a)} an answer
set. Similarly, one can deduce that {q(a)} is an answer set.

A universe U for an EP P is a non-empty countable superset of the constants in P :
cts(P ) ⊆ U . Let BU

P be the set of regular ground atoms that can be formed from an
EP P and the terms in a universe U for P . An open interpretation of an EP P is a pair
(U, I) where U is a universe for P and I is any subset of BU

P .
For ground EPs P the GLi-reduct P x(U,I) w.r.t. an open interpretation (U, I) re-

moves the generalized literals from the program: P x(U,I) contains the rules8

α ← β\βx,
⋃

∀Y ·φ⇒ψ∈βx
{ψ[Y |y] | y ⊆ U , I |= φ[Y |y]} , (1)

for α ← β in P . Intuitively, a generalized literal ∀Y · φ ⇒ ψ is replaced by those
ψ[Y |y] for which φ[Y |y] is true, such that9, e.g., p(a) ← [∀X · q(X ) ⇒ r(X )] means
that in order to deduce p(a) one needs to deduce r(x) for all x where q(x) holds. If
only q(x1) and q(x2) hold, then the GLi-reduct contains p(a) ← r(x1 ), r(x2 ). With
an infinite universe and a condition φ that holds for an infinite number of elements in
the universe, one can thus have a rule with an infinite body in the GLi-reduct. An open
interpretation (U, I) is an open answer set of a ground P if I is an answer set of P x(U,I).

We call PU the ground EP obtained from an EP P by substituting every (free) vari-
able in a rule in P by every element in U . In the following, an EP is assumed to be a
finite set of rules; infinite EPs only appear as byproducts of grounding a finite program
with an infinite universe, or, by taking the GLi-reduct w.r.t. an infinite universe. An open
answer set of P is an open interpretation (U, M) of P with (U, M) an open answer set
of PU . An n-ary predicate p in P is satisfiable if there is an open answer set (U, M)
of P and a x ∈ Un such that p(x) ∈ M . We assume, basically for technical reasons
(see Example 4), that when satisfiability checking a predicate p, p is always non-free,
i.e. there are no free rules with p in the head. Note that satisfiability checking of a free
n-ary predicate p w.r.t. P can always be linearly reduced to satisfiability checking of a
new non-free n-ary predicate p′ w.r.t. P ∪ {p′(X) ← p(X)}.

8 We denote the substitution of Y = Y1, . . . , Yd with y = y1, . . . , yd in an expression (be it an
atom, set of atoms, boolean formula, or rule) X as X[Y |y]. If the substitution is clear from
the context we write X[].

9 We put square brackets around generalized literals for clarity.



184 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

Example 2. Take an EP P

p(X ) ← [∀Y · q(Y ) ⇒ r(Y )] r(X ) ← q(X )
q(X ) ∨ not q(X ) ←

and an open interpretation ({x, y}, {p(x), r(x), q(x), p(y)}). Intuitively, the first rule
says that p(X) holds if for every Y where q(Y ) holds, r(Y ) holds (thus p(X) also
holds if q(Y ) does not hold for any Y ). The GLi-reduct of P{x,y} is

p(x ) ← r(x ) p(y) ← r(x )
r(x ) ← q(x ) r(y) ← q(y)
q(x ) ←

which has exactly {p(x), r(x), q(x), p(y)} as its minimal model such that the open
interpretation ({x, y}, {p(x), r(x), q(x), p(y)}) is indeed an open answer set.

There are EPs, not containing (in)equality atoms, for which predicates are only satisfi-
able by infinite open answer sets.

Example 3. Take the program P , the open answer set variant of the classical infinity
axiom in guarded fixed point logic from [11]:

r1 : q(X ) ← f (X ,Y )
r2 : ← f (X ,Y ),not q(Y )
r3 : ← f (X ,Y ),not well(Y )
r4 : well(Y ) ← q(Y ), [∀X · f (X ,Y ) ⇒ well(X )]
r5 : f (X ,Y ) ∨ not f (X ,Y ) ←

In order to satisfy q with some x, one needs to apply r1, which enforces an f -successor
y. The second rule ensures that also for this y an f -successor must exist, etc. The
third rule makes sure that every f -successor is on a well-founded f -chain. The well-
foundedness itself is defined by r4 which says that y is on a well-founded chain of
elements where q holds if all f -predecessors of y satisfy the same property.

For example, take an infinite open answer set (U, M) with U = {x0, x1, . . .} and
M = {q(x0),well(x0 ), f(x0, x1), q(x1),well(x1 ), f(x1, x2), . . .}). PU contains the
following grounding of r4:

r0
4 : well(x0 ) ← q(x0 ), [∀X · f (X , x0 ) ⇒ well(X )]

r1
4 : well(x1 ) ← q(x1 ), [∀X · f (X , x1 ) ⇒ well(X )]

...

Since, for r0
4 , there is no f(y, x0) in M , the body of the corresponding rule in the GLi-

reduct w.r.t. (U, M) contains only q(x0). For r1
4 , we have that f(x0, x1) ∈ M such that

we include well(x0 ) in the body:

well(x0 ) ← q(x0 )
well(x1 ) ← q(x1 ),well(x0 )

...

Thus, (U, M) is an open answer set of the EP, satisfying q.
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Moreover, no finite open answer set can satisfy q. First, note that an open answer set
(U, M) of P cannot contain loops, i.e. {f(x0, x1), . . . , f(xn, x0)} ⊆ M is not possible.
Assume the contrary. By rule r3, we need well(x0 ) ∈ M . However, the GLi-reduct of
PU contains rules:

well(x0 ) ← q(x0 ),well(xn), . . .
well(xn) ← q(xn),well(xn−1 ), . . .

...
well(x1 ) ← q(x1 ),well(x0 ), . . .

such that well(x0 ) cannot be in any open answer set: we have a circular dependency
and cannot use these rules to motivate well(x0 ), i.e. well(x0 ) is unfounded. Thus an
open answer set cannot contain loops.

Assume that q is satisfied in an open answer set (U, M) with q(x0) ∈ M . Then, by
rule r1, we need some X such that f(x0, X) ∈ M . Since M cannot contain loops X
must be different from x0 and we need some new x1. By rule r2, q(x1) ∈ M , such that
by rule r1, we again need an X such that f(x1, X). Using x0 or x1 for X results in a
loop, such that we need a new x2. This process continues infinitely, such that there are
only infinite open answer sets that make q satisfiable w.r.t. P .

3 Open Answer Set Programming with EPs Via Fixed Point Logic

We assume first-order logic (FOL) interpretations have the same form as open interpre-
tations: a pair (U, M) corresponds with the FOL interpretation M over the domain U .
Furthermore, we consider FOL with equality such that equality is always interpreted as
the identity relation over U .

We define Fixed Point Logic (FPL) along the lines of [11], i.e. as an extension of
first-order logic, where formulas may additionally be fixed point formulas of the form

[LFP WX.ψ(W, X)](X) or [GFP WX.ψ(W, X)](X) , (2)

where W is an n-ary predicate variable, X is an n-ary sequence of distinct variables,
ψ(W, X) is a formula with all free variables contained in X and W appears only posi-
tively in ψ(W, X).

For an interpretation (U, M) and a valuation χ of the free predicate variables, except
W , in ψ, we define the operator ψ(U,M),χ : 2Un → 2Un

on sets S of n-ary tuples

ψ(U,M),χ(S) ≡ {x ∈ Un | (U, M), χ ∪ {W → S} |= ψ(W, x)} , (3)

where χ ∪ {W → S} is the valuation χ extended such that W is assigned to S. If
ψ(W, X) contains only the predicate variable W , we often omit the valuation χ and
write just ψ(U,M). By definition, W appears only positively in ψ such that ψ(U,M),χ is
monotonic on sets of n-ary U -tuples and thus has a least and greatest fixed point, which
we denote by LFP(ψ(U,M),χ) and GFP(ψ(U,M),χ) respectively. Finally, we have that

(U, M), χ |= [LFP WX.ψ(W, X)](x) ⇐⇒ x ∈ LFP(ψ(U,M),χ) , (4)
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and similarly for greatest fixed point formulas. As in [8], we call an FPL sentence (i.e. an
FPL formula without free variables) alternation-free if it does not contain subformulas
ψ ≡ [LFP TX.ϕ](X) and θ ≡ [GFP SY .η](Y ) such that T occurs in η and θ is
a subformula of ϕ, or S occurs in ϕ and ψ is a subformula of η. We can eliminate
greatest fixed point formulas from a formula, by the equivalence: [GFP WX.ψ] ≡
¬[LFP WX.¬ψ[W |¬W ]], where ¬ψ[W |¬W ] is ¬ψ with W replaced by ¬W . If we
thus remove greatest fixed point predicates, and if negations appear only in front of
atoms or least fixed point formulas, then a formula is alternation-free iff no fixed point
variable W appears in the scope of a negation.

First, we rewrite an arbitrary EP as an EP containing only one designated predicate
p and (in)equality; this makes sure that when calculating a fixed point of the predicate
variable p, it constitutes a fixed point of the whole program. We assume without loss
of generality that the set of constants and the set of predicates in an EP are disjoint and
that each predicate q has one associated arity, e.g. q(x) and q(x, y) are not allowed. An
EP P is a p-EP if p is the only predicate in P different from the (in)equality predicate.
In [14], we showed how to rewrite any program P (without generalized literals) as an
equivalent p-program Pp. We adapt that transformation to cope with generalized literals
as well. For an EP P , let in(Y ) ≡ ∪{Y �= a | a ∈ preds(P ) ∪ {0}}, i.e. a set of
inequalities between the variable Y and the predicates in P as well as a new constant 0.
For a sequence of variables Y , we have in(Y ) ≡ ∪Y ∈Y in(Y ). For a set of extended
literals α, we construct αp in two stages:

1. replace every regular m-ary atom q(t) appearing in α (either in atoms, naf-atoms,
or generalized literals) by p(t,0, q) where p has arity n, with n the maximum of
the arities of predicates in P augmented by 1, 0 a sequence of new constants 0 of
length n−m−1, and q a new constant with the same name as the original predicate,

2. in the set thus obtained, replace every generalized literal ∀Y · φ ⇒ ψ by ∀Y ·
φ ∧

∧
in(Y ) ⇒ ψ, where Y �= t in in(Y ) stands for ¬(Y = t) (we defined

generalized literals in function of boolean formulas of atoms).

The p-EP Pp is the program P with all non-free rules r : α ← β replaced by rp : αp ←
βp , in(X) where vars(r) = X . Note that P and Pp have the same free rules.

Example 4. Let P be the EP:

q(X ) ← [∀Y · r(Y ) ⇒ f (X ,Y )]
r(a) ←

f (X ,Y ) ∨ not f (X ,Y ) ←

Then q is satisfiable ({a, x}, {f(x, a), r(a), q(x)}). The p-EP Pp is

p(X , 0 , q) ← [∀Y · p(Y , 0 , r) ∧
∧

in(Y )⇒ p(X ,Y , f )], in(X )
p(a, 0 , r) ←

p(X ,Y , f ) ∨ not p(X ,Y , f ) ←

where in(X ) = {X �= f, X �= q, X �= r, X �= 0}. The corresponding open answer set
for this program is ({a, x, f, r, q, 0}, {p(x, a, f), p(a, 0, r), p(x, 0, q)}). Note that the
free rule in Pp may introduce unwanted literals p(q, x, f), i.e. where X is grounded
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with a predicate q from P . Those unwanted literals will, however, never make non-free
rules applicable since the latter have X �= q in the body, and hence the assumption that
we only check satisfiability of non-free predicates.

Proposition 1. Let P be an EP and q a predicate in P . q is satisfiable w.r.t. P iff there
is an open answer set (U ′, M ′) of the p-EP Pp with p(x,0, q) ∈ M ′.

Note that the size of Pp is polynomial in the size of P .
In [3], a similar motivation drives the reduction of Horn clauses to clauses consist-

ing of only one defined predicate. Their encoding does not introduce new constants to
identify old predicates and depends entirely on the use of (in)equality.

As was shown in [14], we can reduce a p-program P (without generalized literals) to
an equivalent FPL formula. We extend this translation for EPs, i.e. we take into account
generalized literals. The completion comp(P ) of an EP P consists of formulas that
demand that different constants in P are interpreted as different elements:

a �= b (5)

for every pair of different constants a and b in P , and where a �= b ≡ ¬(a = b).
comp(P ) contains formulas ensuring the existence of at least one element in the domain
of an interpretation:

∃X · true (6)

Besides these technical requirements matching FOL interpretations with open interpre-
tations, comp(P ) contains the formulas in fix(P ) = sat(P ) ∪ gl(P ) ∪ gli(P ) ∪
fpf(P ), which can be intuitively categorized as follows: sat(P ) ensures that a model
of fix(P ) satisfies all rules in P , gl(P ) is an auxiliary component defining atoms that
indicate when a rule in P belongs to the GL-reduct, gli(P ) indicates when the an-
tecedent of generalized literals are true, and finally fpf(P ) ensures that every model of
fix(P ) is a minimal model of the GL-reduct of the GLi-reduct of P ; it uses the atoms
defined in gl(P ) to select, for the calculation of the fixed point, only those rules in P
that are in the GL-reduct of the GLi-reduct of P ; the atoms defined in gli(P ) ensure
that the generalized literals are interpreted correctly.

We interpret a naf-atom not a in a FOL formula as the literal ¬a. Moreover, we
assume that, if a set X is empty,

∧
X = true and

∨
X = false. In the following, we

assume that the arity of p, the only predicate in a p-EP is n.

Definition 1. Let P be a p-EP. The fixed point translation of P is fix(P ) ≡ sat(P )∪
gli(P ) ∪ gl(P ) ∪ fpf(P ), where

1. sat(P ) contains formulas

∀Y ·
∧

β ⇒
∨

α (7)

for rules r : α ← β ∈ P with vars(r) = Y ,
2. gl(P ) contains the formulas

∀Y · r(Y ) ⇔
∧

α− ∧
∧

¬β− (8)

for rules r : α ← β ∈ P 10 with vars(r) = Y ,

10 We assume that rules are uniquely named.
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3. gli(P ) contains the formulas

∀Z · g(Z) ⇔ φ (9)

for generalized literals g : ∀Y · φ ⇒ ψ ∈ P 11 where φ contains the variables Z,
4. fpf(P ) contains the formula

∀X · p(X) ⇒ [LFP W X.φ(W , X)](X) (10)

with
φ(W, X) ≡ W (X) ∨

∨

r:p(t)∨α←β∈P

E(r) (11)

and

E(r) ≡ ∃Y · X1 = t1 ∧ . . . ∧ Xn = tn ∧
∧

β+[p | W ] ∧
∧

γ ∧ r(Y ) (12)

where X = X1, . . . , Xn are n new variables, vars(r) = Y , W is a new (second-
order) variable, β+[p | W ] is β+ with p replaced by W , and γ is βx with

– every generalized literal g : ∀Y · φ ⇒ ψ replaced by ∀Y · g(Z) ⇒ ψ, Z the
variables of φ, and, subsequently,

– every p replaced by W .

The completion is comp(P ) ≡ fix(P )∪{a �= b | a, b different in cts(P )}∪{∃X·true}.

The predicate W appears only positively in φ(W, X) such that the fixed point formula
in (10) is well-defined. Note that the predicate p is replaced by the fixed point variable
W in E(r) except in the antecedents of generalized literals, which were replaced by
g-atoms, and the negative part of r, which were replaced by r-atoms, thus respectively
encoding the GLi-reduct and the GL-reduct.

Example 5. We rewrite the program from Example 3 as the p-EP P .

r1 : p(X , 0 , q) ← p(X ,Y , f ), in(X ), in(Y )
r2 : ← p(X ,Y , f ),not p(Y , 0 , q), in(X ), in(Y )
r3 : ← p(X ,Y , f ),not p(Y , 0 ,well), in(X ), in(Y )
r4 : p(Y , 0 ,well) ← p(Y , 0 , q), in(Y ),

[∀X · p(X, Y, f) ∧
∧

in(X) ⇒ p(X, 0, well)]
r5 : p(X ,Y , f ) ∨ not p(X ,Y , f ) ←

where in(X ) and in(Y ) are shorthand for the inequalities with the new constants.
sat(P ) consists of the sentences

– ∀X, Y · p(X, Y, f) ∧
∧

in(X) ∧
∧

in(Y ) ⇒ p(X, 0, q),
– ∀X, Y · p(X, Y, f) ∧ ¬p(Y, 0, q) ∧

∧
in(X) ∧

∧
in(Y ) ⇒ false,

– ∀X, Y · p(X, Y, f) ∧ ¬p(Y, 0,well) ∧
∧

in(X) ∧
∧

in(Y ) ⇒ false, and
– ∀Y · p(Y, 0, q) ∧

∧
in(Y ) ∧ (∀X · p(X, Y, f) ∧

∧
in(X) ⇒ p(X, 0,well))

⇒ p(Y, 0,well),
– ∀X, Y · true ⇒ p(X, Y, f) ∨ ¬p(X, Y, f).

11 We assume that generalized literals are named.
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gl(P ) contains the sentences

– ∀X, Y · r1 (X ,Y ) ⇔ in(X ) ∧ in(Y ),
– ∀X, Y · r2 (X ,Y ) ⇔ ¬p(Y , 0 , q) ∧ in(X ) ∧ in(Y ),
– ∀X, Y · r3 (X ,Y ) ⇔ ¬p(Y , 0 ,well ) ∧ in(X ) ∧ in(Y ),
– ∀Y · r4 (Y ) ⇔ in(Y ), and
– ∀X, Y · r5 (X ,Y ) ⇔ p(X ,Y , f ).

gli(P ) contains the sentence ∀X, Y ·g(X ,Y ) ⇔ p(X ,Y , f ) ∧
∧

in(X ), and fpf(P )
is constructed with

– E(r1) ≡ ∃X, Y · X1 = X ∧ X2 = 0 ∧ X3 = q ∧ W (X, Y, f) ∧ r1(X, Y ),
– E(r4) ≡ ∃Y · X1 = Y ∧ X2 = 0 ∧ X3 = well ∧ W (Y, 0, q)∧

(∀X · g(X, Y ) ⇒ W (X, 0,well)) ∧ r4(Y ).
– E(r5) ≡ ∃X, Y · X1 = X ∧ X2 = Y ∧ X3 = f ∧ r5(X, Y ).

Take an infinite FOL interpretation (U, M) with U = {q, f,well , 0, x0, x1, . . .} and12

M = {p(x0, 0, q), p(x0 , 0 ,well), p(x0, x1, f),
p(x1, 0, q), p(x1 , 0 ,well), p(x1, x2, f), . . .

r1(x0, x0), r1(x0, x1), . . . , r1(x1, x0), . . . , r4(x0), r4(x1), . . .
r5(x0, x1), r5(x1, x2), . . . , g(x0, x1), g(x1, x2), . . .}) .

sat(P ), gl(P ), and gli(P ) are satisfied. We check that fpf(P ) is satisfied by M . We
first construct the fixed point of φ(U,M) where φ(W, X1, X2, X3) ≡ W (X1, X2, X3)∨
E(r1) ∨ E(r4) ∨ E(r5) as in [9], i.e. in stages starting from W 0 = ∅. We have that

– W 1 = φ(U,M)(W 0) = {(x0, x1, f), (x1, x2, f), . . .}, where the (xi, xi+1, f) are
introduced by E(r5),

– W 2 = φ(U,M)(W 1) = W1 ∪ {(x0, 0, q), (x1, 0, q), . . .}, where the (xi, 0, q) are
introduced by E(r1),

– W 3 = φ(U,M)(W 2) = W2 ∪ {(x0, 0,well)}, where (x0, 0,well) is introduced by
E(r4),

– W 4 = φ(U,M)(W 3) = W3 ∪ {(x1, 0,well)},
– . . .

The least fixed point LFP(φ(U,M)) is then ∪α<ωWα [9]. The sentence fpf(P ) is then
satisfied since every p-literal in M is also in this least fixed point. (U, M) is thus a
model of comp(P ), and it corresponds to an open answer set of P .

Proposition 2. Let P be a p-EP. Then, (U, M) is an open answer set of P iff (U, M ∪
R ∪ G) is a model of comp(P ), where R ≡ {r(y) | r[Y | y] : α[] ← β[] ∈ PU , M |=
α[]− ∪ not β[]−, vars(r) = Y }, i.e. the atoms corresponding to rules for which the
GLi-reduct version will be in the GL-reduct, and G ≡ {g(z) | g : ∀Y · φ ⇒ ψ ∈
P, vars(φ) = Z, M |= φ[Z | z]}, i.e. the atoms corresponding to true antecedents of
generalized literals in P .

12 We interpret the constants in comp(P ) by universe elements of the same name.
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Using Propositions 1 and 2, we can reduce satisfiability checking in OASP to satisfiabil-
ity checking in FPL. Moreover, since comp(P ) contains only one fixed point predicate,
the translation falls in the alternation-free fragment of FPL. If the number of constants
in a program P is c, then the number of formulas a �= b is 1

2c(c − 1); since the rest of
comp(P ) is linear in P , this yields a quadratic bound for the size of comp(P ).

Theorem 1. Let P be an EP and q an n-ary predicate in P . q is satisfiable w.r.t. P iff
∃X · p(X,0, q) ∧

∧
comp(Pp) is satisfiable. Moreover, this reduction is polynomial.

4 Open Answer Set Programming with Guarded Extended
Programs

We repeat the definitions of the guarded fragment [2] of first-order logic as in [11]: The
guarded fragment GF of first-order logic is defined inductively as follows:

(1) Every relational atomic formula belongs to GF.
(2) GF is closed under propositional connectives ¬, ∧, ∨, ⇒, and ⇔.
(3) If X , Y are tuples of variables, α(X, Y ) is an atomic formula, and ψ(X , Y ) is a

formula in GF such that free(ψ) ⊆ free(α) = X ∪ Y , then the formulas

∃Y · α(X , Y ) ∧ ψ(X , Y )
∀Y · α(X , Y ) ⇒ ψ(X, Y )

belong to GF, (where free(ψ) are the free variables of ψ). α(X, Y ) is the guard of
the formula.

The guarded fixed point logic µGF is GF extended with fixed point formulas (2) where
ψ(W, X) is a formula such that W does not appear in guards.

Definition 2. A generalized literal ∀Y · φ ⇒ ψ is guarded if φ is of the form γ ∧ φ′

with γ an atom, and vars(Y ) ∪ vars(φ′) ∪ vars(ψ) ⊆ vars(γ); we call γ the guard
of the generalized literal. A rule r : α ← β is guarded if every generalized literal in r
is guarded, and there is an atom γb ∈ β+ such that vars(r) ⊆ vars(γb); we call γb a
body guard of r. It is fully guarded if it is guarded and there is a γh ⊆ α− such that
vars(r) ⊆ vars(γh); γh is called a head guard of r.

An EP P is a (fully) guarded EP ((F)GEP) if every non-free rule in P is (fully)
guarded.

Example 6. Reconsider the EP from Example 3. r1, r2, and r3 are guarded with guard
f(X, Y ). The generalized literal in r4 is guarded by f(X, Y ), and r4 itself is guarded
by q(Y ). Note that r5 does not influence the guardedness as it is a free rule.

Every fully guarded EP is guarded. Vice versa, we can transform every guarded EP into
an equivalent fully guarded one.

Example 7. Take the guarded EP consisting of the rules r1 and r5 from Example 3.
We rewrite r1 as the fully guarded rule q(X ) ∨ not f (X ,Y ) ← f (X ,Y ), i.e. take the
body guard and write it negated in the head, where it serves as head guard. Intuitively,
rules in the original EP where the body guard cannot be satisfied are removed in the
GL-reduct of the new EP; if the body guard is true then the GL-reduct removes the
head guard from the head. The effect is in both cases the same.



Guarded Open Answer Set Programming with Generalized Literals 191

For a GEP P , P f is P with the non-free rules α ← β replaced by α ∪ not γb ← β
for the body guard γb of α ← β. For a GEP P , we have that P f is a FGEP, where the
head guard of each non-free rule is equal to the body guard. Moreover, the size of P f is
linear in the size of P .

Proposition 3. Let P be a GEP. An open interpretation (U, M) of P is an open answer
set of P iff (U, M) is an open answer set of P f .

We have that the construction of a p-EP retains the guardedness properties.

Proposition 4. Let P be an EP. Then, P is a (F)GEP iff Pp is a (F)GEP.

For a fully guarded p-EP P , we can rewrite comp(P ) as the equivalent µGF formulas
gcomp(P ). For a guarded generalized literal ξ ≡ ∀Y · φ ⇒ ψ, define ξg = ∀Y · γ ⇒
ψ ∨ ¬φ′, where, since the generalized literal is guarded, φ = γ ∧ φ′, and vars(Y ) ∪
vars(φ′) ∪ vars(ψ) ⊆ vars(γ), making formula ξg a guarded formula. The extension
of this operator for sets (or boolean formulas) of generalized literals is as usual.

gcomp(P ) is comp(P ) with the following modifications.

– Formula ∃X · true is replaced by

∃X · X = X , (13)

such that it is guarded by X = X .
– Formula (7) is removed if r : α ← β is free or otherwise replaced by

∀Y · γb ⇒
∨

α ∨
∨

¬(β+\{γb}) ∨
∨

β− ∨
∨

¬(βx)g , (14)

where γb is a body guard of r, thus we have logically rewritten the formula such
that it is guarded. If r is a free rule of the form q(t) ∨ not q(t) ← we have
∀Y · true ⇒ q(t) ∨ ¬q(t) which is always true and can thus be removed from
comp(P ).

– Formula (8) is replaced by the formulas

∀Y · r(Y ) ⇒
∧

α− ∧
∧

¬β− (15)

and
∀Y · γh ⇒ r(Y ) ∨

∨
β− ∨

∨
¬(α−\{γh}) , (16)

where γh is a head guard of α ← β. We thus rewrite an equivalence as two implica-
tions where the first implication is guarded by r(Y ) and the second one is guarded
by the head guard of the rule - hence the need for a fully guarded program, instead
of just a guarded one.

– Formula (9) is replaced by the formulas

∀Z · g(Z) ⇒ φ (17)

and
∀Z · γ ⇒ g(Z) ∨ ¬φ′ (18)

where φ = γ ∧ ψ by the guardedness of the generalized literal ∀Y · φ ⇒ ψ.
We thus rewrite an equivalence as two implications where the first one is guarded
by g(Z) (vars(φ) = Z by definition of g), and the second one is guarded by γ
(vars(g(Z) ∨ ¬φ′) = vars(Z) = vars(γ)).
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– For every E(r) in (10), replace E(r) by

E′(r) ≡
∧

ti �∈Y

Xi = ti ∧ ∃Z · (
∧

β+[p|W ] ∧
∧

γ ∧ r(Y ))[ti ∈ Y |Xi] , (19)

with Z = Y \ {ti | ti ∈ Y }, i.e. move all Xi = ti where ti is constant out
of the scope of the quantifier, and remove the others by substituting each ti in∧

β+[p|W ]∧
∧

γ∧r(Y ) by Xi. This rewriting makes sure that every (free) variable
in the quantified part of E′(R) is guarded by r(Y )[ti ∈ Y |Xi].

Example 8. The rule r : p(X ) ∨ not p(X ) ← p(X ), [∀Y · p(Y ) ∧ p(b) ⇒ p(a)]
constitutes a fully guarded p-EP P . The generalized literal is guarded by p(Y ) and
the rule by head and body guard p(X). sat(P ) contains the formula ∀X ·p(X)∧ (∀Y ·
p(Y )∧p(b) ⇒ p(a)) ⇒ p(X)∨¬p(X), gl(P ) consists of ∀X ·r(X ) ⇔ p(X ), gli(P )
is the formula ∀Y · g(Y ) ⇔ p(Y ) ∧ p(b) and E(r) ≡ ∃X · X1 = X ∧W (X)∧ (∀Y ·
g(Y ) ⇒ W (a)) ∧ r(X).

gcomp(P ) consists then of the corresponding guarded formulas:

– ∀X · p(X) ⇒ p(X) ∨ ¬p(X) ∨ ¬(∀Y · p(Y ) ⇒ p(a) ∨ ¬p(b)),
– ∀X · r(X ) ⇒ p(X ),
– ∀X · p(X ) ⇒ r(X ),
– ∀Y · g(Y ) ⇒ p(Y ) ∧ p(b),
– ∀Y · p(Y ) ⇒ g(Y ) ∨ ¬p(b), and
– E′(r) ≡ W (X1) ∧ (∀Y · g(Y ) ⇒ W (a)) ∧ r(X1).

As gcomp(P ) is basically a linear logical rewriting of comp(P ), they are equivalent.
Moreover,

∧
gcomp(P ) is an alternation-free µGF formula.

Proposition 5. Let P be a fully guarded p-EP. (U, M) is a model of comp(P ) iff (U, M)
is a model of gcomp(P ).

Proposition 6. Let P be a fully guarded p-EP. Then,
∧
gcomp(P ) is an alternation-free

µGF formula.

For a GEP P , we have that P f is a FGEP. By Proposition 4, we have that (P f)p is a
fully guarded p-EP, thus the formula gcomp((P f)p) is defined. By Proposition 3, q is
satisfiable w.r.t. P iff q is satisfiable w.r.t. P f . By Theorem 1, we have that q is satisfiable
w.r.t. P f iff ∃X ·p(X,0, q)∧

∧
comp((P f)p) is satisfiable. Finally, Proposition 5 yields

that q is satisfiable w.r.t. P iff ∃X · p(X ,0, q) ∧
∧
gcomp((P f)p) is satisfiable.

The polynomial reduction in Theorem 1 is the worst reduction used, thus yielding
the upper bound for the overall reduction.

Theorem 2. Let P be a GEP and q an n-ary predicate in P . q is satisfiable w.r.t. P iff
∃X ·p(X,0, q)∧

∧
gcomp((P f)p) is satisfiable. Moreover, this reduction is polynomial.

For a GEP P , we have, by Proposition 6, that
∧
gcomp((P f)p) is an alternation-free

µGF formula such that ∃X · p(X,0, q) ∧
∧
gcomp((P f)p) is a µGF sentence.

Corollary 1. Satisfiability checking w.r.t. GEPs can be polynomially reduced to satis-
fiability checking of alternation-free µGF-formulas.
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Since satisfiability checking of µGF formulas is 2-EXPTIME-complete (Proposition
[1.1] in [11]), satisfiability checking w.r.t. GEPs is, by Corollary 1, in 2-EXPTIME.

Corollary 2. Satisfiability checking w.r.t. GEPs is in 2-EXPTIME.

Thus, adding generalized literals to guarded programs does not come at the cost of in-
creased complexity of reasoning, as also for guarded programs without generalized lit-
erals, reasoning is in 2-EXPTIME [14]. In [14], we established 2-EXPTIME-completeness
for satisfiability checking w.r.t. guarded programs (without generalized literals). Since
every guarded program is a GEP, 2-EXPTIME-hardness w.r.t. GEPs follows.

Theorem 3. Satisfiability checking w.r.t. GEPs is 2-EXPTIME-complete.

To conclude this section, we illustrate the use of open answer set programming with
GEPs as a general purpose knowledge representation formalism by simulating satisfia-
bility checking of computation tree logic (CTL) [4, 5] formulas. Let AP be the finite set
of available proposition symbols. Computation tree logic (CTL) formulas are defined
as follows13: every proposition symbol P ∈ AP is a formula, if p and q are formulas,
so are p∧ q and ¬p, if p and q are formulas, then EGp, E(p U q), and EXp are formulas.
The semantics of a CTL formula is given by (temporal) structures. A structure K is a
tuple (S, R, L) with S a countable set of states, R ⊆ S × S a total relation on S, i.e.
∀s ∈ S · ∃t ∈ S · (s, t) ∈ R, and L : S → 2AP a function labeling states with propo-
sitions. Intuitively, R indicates the permitted transitions between states and L indicates
which propositions are true at certain states.

A path π in K is an infinite sequence of states (s0, s1, . . .) such that (si−1, si) ∈ R
for each i > 0. For a path π = (s0, s1, . . .), we denote the element si with πi. For a
structure K = (S, R, L), a state s ∈ S, and a formula p, we inductively define when K
is a model of p at s, denoted K, s |= p:

– K, s |= P iff P ∈ L(s) for P ∈ AP ,
– K, s |= ¬p iff not K, s |= p.
– K, s |= p ∧ q iff K, s |= p and K, s |= q,
– K, s |= EGp iff there exists a path π in K with π0 = s and ∀k ≥ 0 · K, πk |= p,
– K, s |= E(p U q) iff there exists a path π in K with π0 = s and ∃k ≥ 0 · (K, πk |=

q ∧ ∀j < k · K, πj |= p),
– K, s |= EXp iff there is a (s, t) ∈ R and K, t |= p.

The expression K, s |= EGp can be read as “there is some path from s along which p
holds Globally (everywhere)”, K, s |= EXp as “there is some neXt state where p holds”,
and K, s |= E(p U q) as “there is some path from s along which p holds Until q holds
(and q eventually holds)”. A structure K = (S, R, L) satisfies a CTL formula p if there
is a state s ∈ S such that K, s |= p; we also call K a model of p. A CTL formula p is
satisfiable iff there is a model of p.

For a CTL formula p, let clos(p) be the closure of p: the set of subformulas of p. We
construct a GEP G ∪ Dp consisting of a generating part G and a defining part Dp. The

13 In order to make the treatment as simple as possible, we do not include formulas involving the
path quantifier A. However, as indicated in [15], the defined constructs are adequate, i.e. every
CTL formula can be rewritten using only those, while preserving satisfiability.
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guarded program G contains free rules (g1) for every proposition P ∈ AP , free rules
(g2) allowing for state transitions, and rules (g3) that ensure that the transition relation
is total:

[P ](S ) ∨ not [P ](S ) ← (g1)

next(S ,N ) ∨ not next(S ,N ) ← (g2)

succ(S ) ← next(S ,N ) ← S = S ,not succ(S ) (g3)

where [P ] is the predicate corresponding to the proposition P . The S = S is necessary
merely for having guarded rules; note that any rule containing only one (free) variable
can be made guarded by adding such an equality.

The GEP Dp introduces for every non-propositional CTL formula in clos(p) the
following rules (we write [q] for the predicate corresponding to the CTL formula q ∈
clos(p)); as noted before we tacitly assume that rules containing only one (free) variable
S are guarded by S = S:

[¬q](S ) ← not [q](S ) (d1)

[q ∧ r ](S ) ← [q](S ), [r ](S ) (d2)

[EGq](S ) ← not [AF¬q](S ) (d1
3)

[AF¬q](S ) ← not [q](S ) (d2
3)

[AF¬q](S ) ← ∀N · next(S ,N ) ⇒ [AF¬q](N ) (d3
3)

[E(q U r)](S ) ← [r ](S ) (d4)

[E(q U r)](S ) ← [q](S ),next(S ,N ), [E(q U r)](N ) (d5)

[EXq](S ) ← next(S ,N ), [q](N ) (d6)

The rules (d{1,2,6}) are direct translations of the CTL semantics.
Rules (d2

3) and (d3
3) ensure that if [AF¬q](s) holds, then on all paths from s we

eventually reach a state where q does not hold. In particular this is true if q does not
hold in the current state (d2

3), or if it holds for all successors (d3
3); minimality of open

answer sets ensures that after a finite time a state where q does not hold is reached. Rule
(d1

3) then defines [EGq] as the negation of [AF¬q].
Rules (d4) and (d5) are in accordance with the characterization E(q U r) ≡ r ∨ (q ∧

EXE(q U r)) [4], and make implicit use of the minimality of answer sets to eventually
ensure realization of r.

Theorem 4. Let p be a CTL formula. p is satisfiable iff [p] is satisfiable w.r.t. the GEP
G ∪ Dp.

Since CTL satisfiability checking is EXPTIME-complete [4] and satisfiability checking
w.r.t. GEPs is 2-EXPTIME-complete (Theorem 3), the reduction from CTL to GEPs
does not seem to be optimal. However, we can show that the particular GEP G ∪ Dp is
a bound GEP for which reasoning is indeed EXPTIME-complete and thus optimal.

Define the width of a formula ψ as the maximal number of free variables in its
subformulas [10]. We define bound programs by looking at their first order form and
the arity of its predicates.
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Definition 3. Let P be an EP. Then, P is bound if every formula in sat(P ) is of
bounded width and the predicates in P have a bounded arity.

For a CTL formula p, one has that G ∪ Dp is a bound GEP. Indeed, every subformula
of formulas in sat(G ∪ Dp) contains at most 2 free variables and the maximum arity
of the predicates is 2 as well.

Let P be a bound GEP. We have that (P f)p is bound and one can check that ∃X ·
p(X,0, q) ∧

∧
gcomp((P f)p) is of bounded width.

Using Theorem 2, one can reduce satisfiability checking of a bound GEP to satisfi-
ability of a µGF-formula with bounded width. The latter can be done in EXPTIME by
Theorem 1.2 in [11], such that satisfiability checking w.r.t. bound GEPs is in EXPTIME.

The EXPTIME-hardness follows from Theorem 4 and the EXPTIME-hardness of CTL
satisfiability checking [4].

Theorem 5. Satisfiability checking w.r.t. bound GEPs is EXPTIME-complete.

5 Equivalence with Datalog LITE

We define Datalog LITE as in [8]. A Datalog rule is a rule α ← β where α = {a} for
some atom a and β does not contain generalized literals. A basic Datalog program is
a finite set of Datalog rules such that no head predicate appears in negative bodies of
rules. Predicates that appear only in the body of rules are extensional or input predi-
cates. Note that equality is, by the definition of rules, never a head predicate and thus
always extensional. The semantics of a basic Datalog program P , given a relational
input structure U defined over extensional predicates of P 14, is given by the unique
(subset) minimal model whose restriction to the extensional predicates yields U . We
refer to [1] for more details.

For a query (P, q), where P is a basic Datalog program and q is a n-ary predicate, we
write a ∈ (P, q)(U) if the minimal model M of ΣP with input U contains q(a), where
ΣP are the first-order clauses corresponding to P , see [1]. We call (P, q) satisfiable if
there exists a U and an a such that a ∈ (P, q)(U).

A program P is a stratified Datalog program if it can be written as a union of basic
Datalog programs (P1, . . . , Pn), so-called strata, such that each of the head predicates
in P is a head predicate in exactly one stratum Pi. Furthermore, if a head predicate in Pi

is an extensional predicate in Pj , then i < j. This definition entails that head predicates
in the positive body of rules are head predicates in the same or a lower stratum, and head
predicates in the negative body are head predicates in a lower stratum. The semantics
of stratified Datalog programs is defined stratum per stratum, starting from the lowest
stratum and defining the extensional predicates on the way up. For an input structure U
and a stratified program P = (P1, . . . , Pn), define as in [1]:

U0 ≡ U
Ui ≡ Ui−1 ∪ Pi(Ui−1|edb(Pi))

14 We assume that an input structure always defines equality, and that it does so as the identity
relation.



196 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

where Si ≡ Pi(Ui−1|edb(Pi)) is the minimal model of ΣPi among those models of
ΣPi whose restriction to the extensional predicates of Pi is equal to Ui−1|edb(Pi). The
least fixed point model of P is per definition Un.

A Datalog LITE generalized literal is a generalized literal ∀Y · a ⇒ b where a
and b are atoms and vars(b) ⊆ vars(a). Note that Datalog LITE generalized literals
∀Y · a ⇒ b can be replaced by the equivalent ∀Z · a ⇒ b where Z ≡ Y \{Y |
Y �∈ vars(a)}, i.e. with the variables that are not present in the formula a ⇒ b removed
from the quantifier. After such a rewriting, Datalog LITE generalized literals are guarded
according to Definition 2.

A Datalog LITE program is a stratified Datalog program, possibly containing Dat-
alog LITE generalized literals in the positive body, where each rule is monadic or
guarded. A rule is monadic if each of its (generalized) literals contains only one (free)
variable; it is guarded if there exists an atom in the positive body that contains all vari-
ables (free variables in the case of generalized literals) of the rule. The definition of
stratified is adapted for generalized literals: for a ∀Y ·a ⇒ b in the body of a rule where
the underlying predicate of a is a head predicate, this head predicate must be a head
predicate in a lower stratum (i.e. a is treated as a naf-atom) and a head predicate underly-
ing b must be in the same or a lower stratum (i.e. b is treated as an atom). The semantics
can be adapted accordingly since a is completely defined in a lower stratum, as in [8]:
every generalized literal ∀Y · a ⇒ b is instantiated (for any x grounding the free vari-
ables X in the generalized literal) by

∧
{b[X | x][Y | y] | a[X | x][Y | y] is true},

which is well-defined since a is defined in a lower stratum than the rule where the
generalized literal appears.

For stratified Datalog programs, least fixed point models with as input the identity
relation on a universe U coincide with open answer sets with universe U .

Proposition 7. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly with
generalized literals, U a universe for P , and l a literal. For the least fixed point model
Un of P with input U = {id(U)}, we have Un |= l iff there exists an open answer set
(U, M) of P such that M |= l.

Moreover, for any open answer set (U, M) of P , we have that M = Un\id(U).

From Proposition 7, we obtain a generalization of Corollary 2 in [6] (If Π is stratified,
then its unique stable model is identical to its fixed point model.) for stratified programs
with generalized literals and an open answer set semantics.

Corollary 3. Let P be a stratified Datalog program, possibly with generalized literals,
and U a universe for P . The unique open answer set (U, M) of P is identical to its
least fixed point model (minus the equality atoms) with input structure id(U).

We generalize Proposition 7, to take into account arbitrary input structures U . For a
stratified Datalog program P , possibly with generalized literals, define FP ≡ {q(X) ∨
not q(X) ←| q extensional (but not =) in P}.

Proposition 8. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly with
generalized literals, and l a literal. There exists an input structure U for P with least
fixed point model Un such that Un |= l iff there exists an open answer set (U, M) of
P ∪ FP such that M |= l.
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The set of free rules FP ensures a free choice for extensional predicates, a behavior that
corresponds to the free choice of an input structure for a Datalog program P . Note that
P ∪ FP is not a Datalog program anymore, due to the presence of naf in the heads of
FP .

Define a Datalog LITEM program as a Datalog LITE program where all rules are
guarded. As we will see below this is not a restriction. As FP contains only free rules,
P ∪ FP is a GEP if P is a Datalog LITEM program. Furthermore, the size of the GEP
P ∪ FP is linear in the size of P .

Proposition 9. Let P be a Datalog LITEM program. Then, P ∪ FP is a GEP whose
size is linear in the size of P .

By Propositions 8 and 9, satisfiability checking of Datalog LITEM queries can be re-
duced to satisfiability checking w.r.t. GEPs.

Theorem 6. Let (P, q) be a Datalog LITEM query. Then, (P, q) is satisfiable iff q is
satisfiable w.r.t. P ∪ FP . Moreover, this reduction is linear.

With a similar reasoning as in [14], one can show that the opposite direction holds
as well. In [8], Theorem 8.5., a Datalog LITEM query (πϕ, qϕ) was defined for an
alternation-free µGF sentence ϕ such that (U, M) |= ϕ iff (πϕ, qϕ)(M ∪ id(U))
evaluates to true, where the latter means that qϕ is in the least fixed point model of
(πϕ, qϕ)(M ∪ id(U)). For the formal details of this reduction, we refer to [8]. Satisfia-
bility checking w.r.t. GEPs can then be polynomially reduced to satisfiability checking
in Datalog LITEM. Indeed, by Theorem 2, we have that q is satisfiable w.r.t. a GEP P
iff ϕ ≡ ∃X · p(X,0, q) ∧ gcomp((P f)p) is satisfiable. Since ϕ is an alternation-free
µGF sentence, we have that ϕ is satisfiable iff (πϕ, qϕ) is satisfiable. By Theorem 2, the
translation of P to ϕ is polynomial in the size of P and the query (πϕ, qϕ) is quadratic
in ϕ [8], resulting in a polynomial reduction.

Theorem 7. Let P be a GEP, q an n-ary predicate in P and ϕ the µGF sentence
∃X · p(X,0, q) ∧ gcomp((P f)p). q is satisfiable w.r.t. P iff (πϕ, qϕ) is satisfiable.
Moreover, this reduction is polynomial.

Theorems 6 and 7 lead to the conclusion that Datalog LITEM and open ASP with GEPs
are equivalent (i.e. satisfiability checking in either one of the formalisms can be poly-
nomially reduced to satisfiability checking in the other). Furthermore, since Datalog
LITEM, Datalog LITE, and alternation-free µGF are equivalent as well [8], we have the
following concluding result.

Theorem 8. Datalog LITE, alternation-free µGF, and open ASP with GEPs are equiv-
alent.

6 ω-Restricted Logic Programs

A class of logic programs with function symbols are the ω-restricted programs from
[19]. The Herbrand Universe of ω-restricted programs is possibly infinite (in the pres-
ence of function symbols), however, answer sets are guaranteed to be finite, exactly by
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the structure of ω-restricted programs. Informally, an ω-restricted program consists of
a stratified part and a part that cannot be stratified (the ω-stratum), where every rule
is such that every variable in a rule is “guarded” by an atom of which the predicate is
defined in a strictly lower stratum. The answer sets of ω-restricted programs can then
be computed by instantiating the strata from the bottom up. We refer to [19] for precise
definitions.

We extend the definition of universe for programs that contain function symbols. A
universe U for a program P is a non-empty countable superset of the Herbrand Universe
HP of P . Thus, a universe U is equal to HP ∪ X for some countable X ; as usual, we
call the elements from U \HP anonymous.

For ω-restricted programs, the open answer set semantics coincides with the normal
answer set semantics.

Theorem 9. Let P be an ω-restricted program and U a universe for P . (U, M) is an
open answer set of P iff M is an answer set of P .

Since checking whether there exists an answer set of an ω-restricted program is in gen-
eral 2-NEXPTIME-complete [19], we have, with Theorem 9, 2-NEXPTIME-completeness
for consistency checking under the open answer set semantics for ω-restricted pro-
grams, where consistency checking involves checking whether there exists an open
answer set of a program.

Theorem 10. Consistency checking w.r.t. ω-restricted programs is 2-NEXPTIME-
complete.

Furthermore, since reasoning with ω-restricted programs is implemented in the SMOD-
ELS reasoner [18], Theorem 9 implies an implementation of the open answer set se-
mantics for ω-restricted programs as well.

In [20], ω-restricted programs allow for cardinality constraints and conditional lit-
erals. Conditional literals have the form X.L : A where X is a set of variables, A is an
atom (the condition) and L is an atom or a naf-atom. Intuitively, conditional literals cor-
respond to generalized literals ∀X · A ⇒ L, i.e., the defined reducts add instantiations
of L to the body if the corresponding instantiation of A is true. However, conditional
literals appear only in cardinality constraints Card(b,S )15 where S is a set of literals
(possibly conditional), such that a for all effect such as with generalized literals cannot
be obtained with conditional literals.

Take, for example, the rule q ← [∀X · b(X) ⇒ a(X)] and a universe U = {x1, x2}
with an interpretation containing b(x1) and b(x2). The reduct will contain a rule q ←
a(x1), a(x2) such that, effectively, q holds only if a holds everywhere where b holds.
The equivalent rule rewritten with a conditional literal would be something like q ←
Card(n, {X.a(X) : b(X)}), resulting in a rule q ← Card(n, {a(x1), a(x2)}). In order
to have the for all effect, we have that n must be 2. However, we cannot know this n in
advance, making it impossible to express a for all restriction.

Further note that consistent ω-restricted programs (with cardinality constraints and
conditional literals) always have finite answer sets, which makes a reduction from GEPs
(in which infinity axioms can be expressed) to ω-restricted programs non-trivial.

15 Card(b,S) is true if at least b elements from S are true.
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7 Conclusions and Directions for Further Research

We defined GEPs, guarded programs with generalized literals, under an open answer
set semantics, and showed 2-EXPTIME-completeness of satisfiability checking by a re-
duction to µGF. Furthermore, we translated Datalog LITEM programs to GEPs, and
generalized the result that the unique answer set of a stratified program is identical to
its least fixed point.

We plan to extend GEPs to loosely guarded EPs, where a guard may be a set of
atoms; a reduction to the loosely guarded fixed point logic should then provide for de-
cidability. More liberal generalized literals, with the consequent a conjunction of atoms
and naf-atoms instead of just an atom, does not affect the definition of the GLi-reduct,
but the FPL translation requires modification to ensure no fixed point variable appears
negatively.

We plan to look into the correspondence with Datalog and use decidability results
for Datalog satisfiability checking, as, e.g., in [12], to search for decidable fragments
under an open answer set semantics.

Although adding generalized literals to guarded programs does not increase the com-
plexity of reasoning, it does seem to increase expressivity: one can, for example, express
infinity axioms. Given the close relation with Datalog LITE and the fact that Datalog
LITE without generalized literals cannot express well-founded statements, it seems un-
likely that guarded programs without generalized literals can express infinity axioms;
this is subject to further research.

We only considered generalized literals in the positive body. If the antecedents in
generalized literals are atoms, it seems intuitive to allow also generalized literals in the
negative body. E.g., take a rule α ← β, not [∀X · b(X) ⇒ a(X)]; it seems natural
to treat not [∀X · b(X) ⇒ a(X)] as ∃X · b(X) ∧ ¬a(X) such that the rule becomes
α ← β, b(X), not a(X). A rule like [∀X · b(X) ⇒ a(X)] ∨ α ← β is more involved
and it seems that the generalized literal can only be intuitively removed by a modified
GLi-reduct.

We established the equivalence of open ASP with GEPs, alternation-free µGF, and
Datalog LITE. Intuitively, Datalog LITE is not expressive enough to simulate normal
µGF since such µGF formulas could contain negated fixed point variables, which would
result in a non-stratified program when translating to Datalog LITE [8]. Open ASP with
GEPs does not seem to be sufficiently expressive either: fixed point predicates would
need to appear under negation as failure, however, the GL-reduct removes naf-literals,
such that, intuitively, there is no real recursion through naf-literals. Note that it is un-
likely (but still open) whether alternation-free µGF and normal µGF are equivalent, i.e.,
whether the alternation hierarchy can always be collapsed.
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9. E. Grädel. Guarded Fixed Point Logic and the Monadic Theory of Trees. Theoretical Com-
puter Science, 288:129–152, 2002.
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