Skip to main content

Noise Calculation in the Semiclassical Framework: A Critical Analysis of the Monte Carlo Method and a Numerical Alternative

  • Conference paper
Large-Scale Scientific Computing (LSSC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3743))

Included in the following conference series:

  • 1832 Accesses

Abstract

Noise modeling in the semiclassical framework of the Boltzmann transport equation (BTE) is analyzed. The usual approach to solve the BTE, the Monte Carlo method, is found to be prohibitively CPU intensive for technically relevant frequencies below 100GHz. A numerical alternative based on a spherical harmonics expansion of the BTE is presented, of which the CPU time does not depend on the frequency. In addition, this approach allows to solve the Langevin-type BTE, which gives more physical insight into noise. This is demonstrated for some relevant device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, T.H.: The Design of CMOS Radio Frequency Integrated Circuits, 1st edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  2. Kogan, S.: Electronic Noise and Fluctuations in Solids. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  3. Brunetti, R., Jacoboni, C., Nava, F., Reggiani, L., Bosman, G., Zijlstra, R.J.J.: Diffusion coefficient of electrons in silicon. J. Appl. Phys. 52, 6713–6722 (1981)

    Article  Google Scholar 

  4. Moglestue, C.: Monte-Carlo particle modelling of noise in semiconductors. In: International Conference on Noise in Physical Systems and 1/f Fluctuations, pp. 23–25 (1983)

    Google Scholar 

  5. Jungemann, C., Neinhüs, B., Decker, S., Meinerzhagen, B.: Hierarchical 2–D DD and HD noise simulations of Si and SiGe devices: Part II—Results. IEEE Trans. Electron Devices 49, 1258–1264 (2002)

    Article  Google Scholar 

  6. Gonzalez, T., Mateos, J., Martin-Martinez, M.J., Perez, S., Rengel, R., Vasallo, B.G., Pardo, D.: Monte Carlo simulation of noise in electronic devices: limitations and perspectives. In: Proceedings of the 3rd International Conference on Unsolved Problems of Noise, pp. 496–503 (2003)

    Google Scholar 

  7. Goldsman, N., Lin, C., Han, Z., Huang, C.: Advances in the spherical Harmonic-Boltzmann-Wigner approach to device simulation. Superlattices and Microstructures 27, 159–175 (2000)

    Article  Google Scholar 

  8. Gnudi, A., Ventura, D., Baccarani, G., Odeh, F.: Two-Dimensional MOSFET Simulation by Means of a Multidimensional Spherical Harmonics Expansion of the Boltzmann Transport Equation. Solid–State Electron 36, 575–581 (1993)

    Article  Google Scholar 

  9. Jungemann, C., Graf, P., Zylka, G., Thoma, R., Engl, W.L.: New highly efficient method for the analysis of correlation functions based on a spherical harmonics expansion of the BTE’s Green’s function. In: Proc. IWCE, Portland, Oregon, pp. 45–48 (1994)

    Google Scholar 

  10. Korman, C.E., Mayergoyz, I.D.: Semiconductor noise in the framework of semiclassical transport. Phys. Rev. B 54, 17620–17627 (1996)

    Article  Google Scholar 

  11. Jungemann, C., Meinerzhagen, B.: A Legendre polynomial solver for the Langevin Boltzmann equation. In: Proc. IWCE, pp. 22–23 (2004)

    Google Scholar 

  12. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  13. Jungemann, C., Meinerzhagen, B.: Hierarchical Device Simulation, ser. In: Selberherr, S. (ed.) Computational Microelectronics. Springer, Heidelberg (2003)

    Google Scholar 

  14. van Vliet, K.M.: Markov approach to density fluctuations due to transport and scattering. I. Mathematical Formalism∗. J. Math. Phys. 12, 1981–1998 (1971)

    Article  MATH  Google Scholar 

  15. Bronstein, I.N., Semendjajew, K.A.: Taschenbuch der Mathematik. B. G. Teubner, Stuttgart (1991)

    Google Scholar 

  16. Branin, F.H.: Network sensitivity and noise analysis simplified. IEEE Transactions on circuit theory 20, 285–288 (1973)

    Google Scholar 

  17. Jungemann, C., Meinerzhagen, B.: Analysis of the stochastic error of stationary Monte Carlo device simulations. IEEE Trans. Electron Devices 48, 985–992 (2001)

    Article  Google Scholar 

  18. Jungemann, C., Meinerzhagen, B.: In-advance CPU time analysis for stationary Monte Carlo device simulations. IEICE Trans. on Electronics E86-C, 314–319 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jungemann, C., Meinerzhagen, B. (2006). Noise Calculation in the Semiclassical Framework: A Critical Analysis of the Monte Carlo Method and a Numerical Alternative. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_17

Download citation

  • DOI: https://doi.org/10.1007/11666806_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31994-8

  • Online ISBN: 978-3-540-31995-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics