Abstract
We investigate approximation in W 1,2 topology of the solution set of a differential inclusion with Kamke Lipschitz right-hand side. The results are then applied to Bolza optimal control problem in form of differential inclusions. Namely it is shown that the optimal solution is the limit of optimal solution of appropriately defined finite dimensional nonlinear programming problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clarke, F., Yu, L., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)
Donchev, T.: Generic properties of differential inclusions and control problems. In: Li, Z., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 266–271. Springer, Heidelberg (2005)
Donchev, T., Farkhi, E.: Euler approximation of discontinuous one-sided Lipschitz convex differential inclusions. In: Ioffe, A., Reich, S., Shafrir, I. (eds.) Calculus of Variations and Differential Equations, pp. 101–118. Chapman & Hall/CRC Boca Raton, New York (1999)
Dontchev, A., Farkhi, E.: Error estimates for discretized differential inclusions. Computing 41, 349–358 (1989)
Dontchev, A., Lempio, F.: Difference methods for differential inclusions: a survey. SIAM Rev 34, 263–294 (1992)
Grammel, G.: Towards fully discretized differential inclusions. Set Valued Analysis 11, 1–8 (2003)
Ioffe, A.: Euler–Lagrange and Hamiltonian formalisms in dynamical optimization. Trans. Amer. Math. Soc. 349, 2871–2900 (1997)
Lempio, F., Veliov, V.: Discrete approximations of differential inclusions. Bayreuter Mathematische Schiften, Heft 54, 149–232 (1998)
Mordukhovich, B.: Discrete approximations and refined Euler-Lagrange conditions for differential inclusions. SIAM J. Control. Optim. 33, 882–915 (1995)
Mordukhovich, B.: Approximation Methods in Problems of Optimization and Control. Nauka, Moskow (1988) (in Russian)
Pianigiani, G.: On the fundamental theory of multivalued differential equations. J. Differential Equations 25, 30–38 (1977)
Pshenichniy, B.: Convex Analysis and Extremal Problems. Nauka, Moskow (1980) (in Russian)
Rurenko, E.: Approximate calculation of the attainability set for a differential inclusions. Vestn. Mosk. Univ. Ser, Vych. Math. Kibern. 15, 81–83 (1989)
Tolstonogov, A.: Differential Inclusions in a Banach Space. Kluwer, Dordrecht (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Donchev, T. (2006). Approximation of the Solution Set of Optimal Control Problems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_23
Download citation
DOI: https://doi.org/10.1007/11666806_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31994-8
Online ISBN: 978-3-540-31995-5
eBook Packages: Computer ScienceComputer Science (R0)