Abstract
In this paper we discuss an inclusion method for solving rectangular (over- and under-determined) dense linear systems where the input data are uncertain and vary within given intervals. An improvement of the quality of the solution enclosures is described for both independent and parameter dependent input intervals. A fixed-point algorithm with result verification that exploits the structure of the problems to be solved is given. Mathematica functions for solving the discussed rectangular problems are developed and presented. Numerical examples illustrate the advantages of the proposed improved approach.
This work was supported by the Bulgarian National Science Fund under grant No. MM-1301/03.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hölbig, C., Krämer, W.: Selfverifying Solvers for Dense Systems of Linear Equations Realized in C-XSC. Universität Wuppertal, Preprint BUGHW-WRSWT 2003/1 (2003), http://www.math.uni-wuppertal.de/wrswt/literatur.html
Krämer, W., Kulisch, U., Lohner, R.: Numerical Toolbox for Verified Computing II – Advanced Numerical Problems. Universität Karlsruhe (1994), http://www.uni-karlsruhe.de/~Rudolf.Lohner/papers/tb2.ps.gz
Moore, R.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Popova, E.D., Krämer, W.: Parametric Fixed-Point Iteration Implemented in CXSC, Preprint 2003/03, WRSWT, Universität Wuppertal (2003)
Popova, E.: Parametric Interval Linear Solver. Numerical Algorithms 37, 1–4, 345–356 (2004)
Rump, S.: Solving Algebraic Problems with High Accuracy. In: Kulisch, U., Miranker, W. (eds.) A New Approach in Scientific Computation, pp. 51–120. Academic Press, London (1983)
Rump, S.M.: Rigorous Sensistivity Analysis for Systems of Linear and Nonlinear Equations. Mathematics of Computation 54(190), 721–736 (1990)
Rump, S.M.: Verification Methods for Dense and Sparse Systems of Equations. In: Herzberger, J. (ed.) Topics in Validated Computations, pp. 63–135. Elsevier Science B. V, Amsterdam (1994)
Stewart, G.H.: Introduction to Matrix Computations. Academic Press, London (1973)
Wolfram, S.: The Mathematica Book. Wolfram Media/Cambridge U. Press (1999)
Zielke, G.: Report on test matrices for generalized inverses. Computing 36, 105–162 (1986)
Zielke, G., Drygalla, V.: Genaue Lösung linearer Gleichungssyteme, Mitteilungen der GAMM 26, Heft 1/2, 7–107 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Popova, E.D. (2006). Improved Solution Enclosures for Over- and Underdetermined Interval Linear Systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_34
Download citation
DOI: https://doi.org/10.1007/11666806_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31994-8
Online ISBN: 978-3-540-31995-5
eBook Packages: Computer ScienceComputer Science (R0)