Skip to main content

Computation of High-Precision Mathematical Constants in a Combined Cluster and Grid Environment

  • Conference paper
Large-Scale Scientific Computing (LSSC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3743))

Included in the following conference series:

  • 1903 Accesses

Abstract

The computation of high-precision mathematical constants in a combined cluster and grid environment is presented. Mathematical constants (e.g., π and e) are computed from their series expansions. The binary splitting method recursively reduces the calculation of the sum of the series by effectively splitting the problem into two halves and performing the same calculation on each half. By using grid computing for part of the binary splitting process, the supercomputer computation time, which is very expensive, can be reduced. We implemented the independent binary splitting process in a grid environment using a grid RPC system called OmniRPC. We successfully achieved nearly linear speedup for larger digits on an 8-node PC cluster used over a wide-area network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, D.H.: Some background on kanada’s recent pi calculation (2003), http://www.crd.lbl.gov/~dhbailey/dhbpapers/dhb-kanada.pdf

  2. Bailey, D., Borwein, P., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66, 903–913 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borwein, J.M., Borwein, P.B.: Pi and the AGM — A Study in Analytic Number Theory and Computational Complexity. Wiley, New York (1987)

    MATH  Google Scholar 

  4. Brent, R.P.: Fast multiple-precision evaluation of elementary functions. Journal of the ACM 23, 242–251 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brent, R.P.: The Complexity of Multiple-Precision Arithmetic. University of Queensland Press, Brisbane (1976)

    Google Scholar 

  6. Chudnovsky, D.V., Chudnovsky, G.V.: Approximations and complex multiplication according to Ramanujan, pp. 375–396, 468–472. Academic Press Inc., Boston (1988)

    Google Scholar 

  7. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  8. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer Applications and High Performance Computing 11, 115–128 (1997)

    Article  Google Scholar 

  9. Haible, B., Papanikolaou, T.: Fast multiprecision evaluation of series of rational numbers. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 338–350. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Doklady Akad. Nauk SSSR 145, 293–294 (1962)

    Google Scholar 

  11. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1997)

    Google Scholar 

  12. Percival, C.: PiHex — A distributed effort to calculate Pi, http://www.cecm.sfu.ca/projects/pihex/

  13. Salamin, E.: Computation of ð using arithmetic-geometric mean. Math. Comput. 30, 565–570 (1976)

    MATH  MathSciNet  Google Scholar 

  14. Sato, M., Boku, T., Takahashi, D.: OmniRPC: a grid RPC system for parallel programming in cluster and grid environment. In: Proc. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003), pp. 206–213 (2003)

    Google Scholar 

  15. Sato, M., Nakada, S., Sekiguchi, S., Matsuoka, S., Nagashima, U., Takagi, H.: Ninf: A network based information library for global world-wide computing infrastructure. In: Hertzberger, B., Sloot, P.M.A. (eds.) HPCN-Europe 1997. LNCS, vol. 1225, pp. 491–502. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  16. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing (Arch. Elektron. Rechnen) 7, 281–292 (1971)

    MATH  MathSciNet  Google Scholar 

  17. Takahashi, D.: Implementation of multiple-precision parallel division and square root on distributed-memory parallel computers. In: Proc. 2000 International Workshop on Parallel Processing (ICPP 2000 Workshops), pp. 229–235 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takahashi, D., Sato, M., Boku, T. (2006). Computation of High-Precision Mathematical Constants in a Combined Cluster and Grid Environment. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_52

Download citation

  • DOI: https://doi.org/10.1007/11666806_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31994-8

  • Online ISBN: 978-3-540-31995-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics