Skip to main content

Efficient Solution of the Schrödinger-Poisson Equations in Semiconductor Device Simulations

  • Conference paper
Large-Scale Scientific Computing (LSSC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3743))

Included in the following conference series:

  • 2185 Accesses

Abstract

This paper reviews the numerical issues arising in the simulation of electronic states in highly confined semiconductor structures like quantum dots. For these systems, the main challenge lies in the efficient and accurate solution of the self-consistent one-band and multi-band Schrödinger-Poisson equations. After a brief introduction of the physical background, we first demonstrate that unphysical solutions of the Schrödinger equation due to the presence of material boundaries can be avoided by combining a suitable ordering of the differential operators with a robust discretization method like box discretization. Next, we discuss algorithms for the efficient solution of the resulting sparse matrix problems even on small computers. Finally, we introduce a predictor-corrector-type approach for the stabilizing the outer iteration loop that is needed to obtain a self-consistent solution of both Schrödinger’s and Poisson’s equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ARPACK libraries and related publications, http://www.caam.rice.edu/software/ARPACK/

  2. Bastard, G.: Superlattice band structure in the envelope-function approximation. Phys. Rev. B 24, 5693–5697 (1981)

    Article  Google Scholar 

  3. Burt, M.G.: The justification for applying the effective-mass approximation to semiconductors. J. Phys.: Condens. Matter 4, 6651–6690 (1992)

    Article  Google Scholar 

  4. Burt, M.G.: Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures. J. Phys.: Condens. Matter 11, R53–R83 (1999)

    Article  Google Scholar 

  5. Dresselhaus, G., Kip, A.F., Kittel, C.: Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals. Phys. Rev. 98, 368–384 (1955)

    Article  Google Scholar 

  6. Dupont, T., Kendall, R.P., Rachford, H.H.: An approximate factorization procedure for solving self-adjoint elliptic difference equations. SIAM J. Numerical Analysis 5, 559–573 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  7. Foreman, B.A.: Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. Phys. Rev. B 48, 4964–4967 (1993)

    Article  Google Scholar 

  8. Foreman, B.A.: Elimination of spurious solutions from eight-band k∙p theory. Phys. Rev. B. 56, R12748–R12751 (1997)

    Article  Google Scholar 

  9. Kane, E.O.: The k∙p method. In: Willardson, R.K., Beer, A.C. (eds.) Semiconductors and Semimetals: III–V compounds, vol. 1, pp. 75–100. Academic Press, New York (1966)

    Chapter  Google Scholar 

  10. Luttinger, J.M., Kohn, W.: Motion of Electrons and Holes in Perturbed Periodic Fields. Phys. Rev. 97, 869–883 (1955)

    Article  MATH  Google Scholar 

  11. Morrow, R.A., Brownstein, K.R.: Model effective-mass Hamiltonians for abrupt heterojunctions and the associated wave-function-matching conditions. Phys. Rev. B 30, 678–680 (1984)

    Article  Google Scholar 

  12. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM Society for Industrial & Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  13. Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures. J. Applied Phys. 81, 7880–7884 (1997)

    Article  Google Scholar 

  14. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  15. Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors. Springer, Heidelberg (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trellakis, A., Andlauer, T., Vogl, P. (2006). Efficient Solution of the Schrödinger-Poisson Equations in Semiconductor Device Simulations. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_69

Download citation

  • DOI: https://doi.org/10.1007/11666806_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31994-8

  • Online ISBN: 978-3-540-31995-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics