Skip to main content

PAQ: Time Series Forecasting for Approximate Query Answering in Sensor Networks

  • Conference paper
Wireless Sensor Networks (EWSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3868))

Included in the following conference series:

Abstract

In this paper, we present a method for approximating the values of sensors in a wireless sensor network based on time series forecasting. More specifically, our approach relies on autoregressive models built at each sensor to predict local readings. Nodes transmit these local models to a sink node, which uses them to predict sensor values without directly communicating with sensors. When needed, nodes send information about outlier readings and model updates to the sink. We show that this approach can dramatically reduce the amount of communication required to monitor the readings of all sensors in a network, and demonstrate that our approach provides provably-correct, user-controllable error bounds on the predicted values of each sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler, R., et al.: Design and deployment of industrial sensor networks: Experiences from the north sea and a semiconductor plant. In: SenSys (2005)

    Google Scholar 

  2. Brockwell, P., Davis, R.: Introduction to Time Series and Forecasting. Springer, Heidelberg (1994)

    Google Scholar 

  3. Brooke, T., Burrell, J.: From ethnography to design in a vineyard. In: Proceeedings of the DUX Conference (June 2003) Case Study

    Google Scholar 

  4. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabilistic queries over imprecise data. In: Proceedings of SIGMOD (2003)

    Google Scholar 

  5. Chu, D., Desphande, A., Hellerstein, J., Hong, W.: Approximate data collection in sensor networks using probabilistic models. In: ICDE (April 2006)

    Google Scholar 

  6. Cowell, R., Dawid, P., Lauritzen, S., Spiegelhalter, D.: Probabilistic Networks and Expert Systems. Springer, New York (1999)

    MATH  Google Scholar 

  7. Crossbow, I.: Wireless sensor networks (mica motes), http://www.xbow.com/Products/Wireless_Sensor_Networks.htm

  8. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.: Model-driven data acquisition in sensor networks. In: VLDB (2004)

    Google Scholar 

  9. Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins, Baltimore (1989)

    MATH  Google Scholar 

  10. Han, Q., Mehrotra, S., Venkatasubramanian, N.: Energy efficient data collection in distributed sensor environments. In: Proceedings of ICDCS (2004)

    Google Scholar 

  11. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust communication paradigm for sensor networks. In: MobiCOM (2000)

    Google Scholar 

  12. Jain, A., Chang, E.Y., Wanf, Y.: Adaptive stream management using kalman filters. In: SIGMOD (2004)

    Google Scholar 

  13. Kotidis, Y.: Snapshot queries: towards data-centric sensor networks. In: Proc. of the 21th Intl. Conf. on Data Engineering (April 2005)

    Google Scholar 

  14. Lazaridis, I., Mehrotra, S.: Capturing sensor-generated time series with quality guarantees. In: Proceedings of ICDE (2003)

    Google Scholar 

  15. Madden, S., Hong, W., Hellerstein, J.M., Franklin, M.: TinyDB web page, http://telegraph.cs.berkeley.edu/tinydb

  16. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D.: Wireless sensor networks for habitat monitoring. In: WSNA (2002)

    Google Scholar 

  17. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  18. Olston, C., Widom, J.: Best effort cache sychronization with source cooperation. In: Proceedings of SIGMOD (2002)

    Google Scholar 

  19. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: Proceedings of SenSys (2004)

    Google Scholar 

  20. Pottie, G., Kaiser, W.: Wireless integrated network sensors. Communications of the ACM 43(5), 51–58 (2000)

    Article  Google Scholar 

  21. Tulone, D.: A resource–efficient time estimation for wireless sensor networks. In: Proc. of the 4th Workshop of Principles of Mobile Computing, pp. 52–59 (2004)

    Google Scholar 

  22. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In: NSDI (March 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tulone, D., Madden, S. (2006). PAQ: Time Series Forecasting for Approximate Query Answering in Sensor Networks. In: Römer, K., Karl, H., Mattern, F. (eds) Wireless Sensor Networks. EWSN 2006. Lecture Notes in Computer Science, vol 3868. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11669463_5

Download citation

  • DOI: https://doi.org/10.1007/11669463_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32158-3

  • Online ISBN: 978-3-540-32159-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics