Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3877))

Included in the following conference series:

  • 271 Accesses

Abstract

This paper assesses the usefulness of surface features in a multimedia retrieval setting. Surface features describe the metadata or structure of a document rather than the content. We note that the distribution of these features varies across topics. The paper shows how these distributions can be obtained through relevance feedback and how this allows for adaptation of (content-based) search results for topic or user preference. An analysis of the distribution of surface features in the TRECVID collection indicates that they are potentially useful, and a preliminary feedback experiment confirms that exploiting surface features can improve retrieval effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)

    Article  Google Scholar 

  2. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46, 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lee, H., Smeaton, A.F.: Designing the user interface for the Físchlár digital video library. Journal of Digital Information 2 (2002)

    Google Scholar 

  4. Yan, R., Yang, J., Hauptmann, A.G.: Learning query-class dependent weights in automatic video retrieval. In: MULTIMEDIA 2004: Proceedings of the 12th annual ACM international conference on Multimedia, pp. 548–555. ACM Press, New York (2004)

    Chapter  Google Scholar 

  5. Chua, T.S., Neo, S.Y., Li, K.Y., Wang, G., Shi, R., Zhao, M., Xu, H.: Trecvid 2004 search and feature extraction task by NUS PRIS. In: TREC Video Retrieval Evaluation Online Proceedings (2004)

    Google Scholar 

  6. Lin, W.H., Hauptmann, A.: Modelling timing features in broadcast news video classification. In: Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, pp. 27–30 (2004)

    Google Scholar 

  7. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281 (1998)

    Google Scholar 

  8. Hiemstra, D.: A linguistically motivated probabilistic model of information retrieval. In: Nikolaou, C., Stephanidis, C. (eds.) ECDL 1998. LNCS, vol. 1513, pp. 569–584. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Kraaij, W., Westerveld, T., Hiemstra, D.: The importance of prior probabilities for entry page search. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 27–34. ACM Press, New York (2002)

    Google Scholar 

  10. Ramirez, G., Westerveld, T., de Vries, A.P.: Structural features in content oriented XML retrieval. Technical Report INS-E0508, CWI, Amsterdam, The Netherlands (2005)

    Google Scholar 

  11. Gauvain, J.L., Lamel, L., Adda, G.: The LIMSI broadcast news transcription system. Speech Communication 37, 89–108 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Westerveld, T., de Vries, A.P., Ramírez, G. (2006). Surface Features in Video Retrieval. In: Detyniecki, M., Jose, J.M., Nürnberger, A., van Rijsbergen, C.J. (eds) Adaptive Multimedia Retrieval: User, Context, and Feedback. AMR 2005. Lecture Notes in Computer Science, vol 3877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11670834_15

Download citation

  • DOI: https://doi.org/10.1007/11670834_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32174-3

  • Online ISBN: 978-3-540-32175-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics