Skip to main content

Using Relevance Feedback to Bridge the Semantic Gap

  • Conference paper
Adaptive Multimedia Retrieval: User, Context, and Feedback (AMR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3877))

Included in the following conference series:

  • 294 Accesses

Abstract

In this article relevant developments in relevance feedback based image annotation and retrieval are reported. A new approach to infer semantic concepts representing meaningful objects in images is also described. The proposed technique combines user relevance feedback and underlying low-level properties of elementary building blocks making up semantic objects in images. Images are regarded as mosaics made of small building blocks featuring good representations of colour, texture and edgeness. The approach is based on accurate classification of these building blocks. Once this has been achieved, a signature for the object of concern is built. It is expected that this signature features a high discrimination power and consequently it becomes very suitable to find other images containing the same semantic object. The model combines fuzzy clustering and relevance feedback in the training stage, and uses fuzzy support vector machines in the generalization stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O’Reilly, J.: Content Engineering. Electronics Communications Engineering Journal 14(4) (August 2002)

    Google Scholar 

  2. Vailaya, A., Figueiredo, M.A.T., Jain, A.K., Zhang, H.-J.: Image classification for content-based indexing. IEEE Trans. Image Processing 10, 117–130 (2001)

    Article  MATH  Google Scholar 

  3. Vailaya, A., Jain, A., Zhang, H.-J.: On image classification: city vs. landscape. In: Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 3–8 (1998)

    Google Scholar 

  4. Dorai, C., Venkatesh, S.: Bridging the semantic gap with computational media aesthetics. IEEE Multimedia 10, 15–17 (2003)

    Article  Google Scholar 

  5. Cox, J., Miller, M., Minka, T., Yianilos, P.: An Optimized Interaction Strategy for Bayesian Relevance Feedback. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 553–558 (1998)

    Google Scholar 

  6. Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance Feedback: A Power Tool in Interactive Content-Based Image Retrieval. IEEE Tran. Circuits and Systems for Video Technology 8(5), 644–655 (1998)

    Article  Google Scholar 

  7. Jing, F., Li, M., Zhang, H.-J., Zhang, B.: Relevance Feedback in Region-Based Image Retrieval. IEEE Transactions on Circuits and Systems for Video Technology 14(5) (2004)

    Google Scholar 

  8. Rui, Y., Huan, T.S., Mehrotra., S.: Content-based Image Retrieval with Relevance Feedback in MARS. In: Proceedings of IEEE Int. Conf. on Image Processing, pp. 26–29 (1997)

    Google Scholar 

  9. Koskela, M., Laaksonen, J., Oja, E.: Use of image Subsets in Image Retrieval with Self-Organizing Maps. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 508–516. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Wu, K., Yap, K.H.: Fuzzy relevance feedback in content-based image retrieval. In: Proc. Int. Conf. Information and Signal Processing and Pacific-Rim Conf. Multimedia, Singpore (2003)

    Google Scholar 

  11. Tian, Q., Wu, Y., Huang, T.S.: Incorporate Discriminate Analysis with EM Algorithm in Image Retrieval. In: Proc. IEEE International Conf. on Multimedia and Expo. (2000)

    Google Scholar 

  12. Wu, Y., Tian, Q., Huang, T.S.: Integrating Unlabeled Images for Image Retrieval Based on Relevance Feedback. In: Proc. of the 15th Int’l Conf. on Pattern Recognition, vol. 1, pp. 21–24 (2000)

    Google Scholar 

  13. Müller, K.-R., Mika, S., Ratsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Neural Networks 12(2), 181–201 (2001)

    Article  Google Scholar 

  14. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1999)

    MATH  Google Scholar 

  15. Vapnik, V.: An overview of statistical learning theory. IEEE transactions on Neural Networks 5, 988–1000 (1999)

    Article  Google Scholar 

  16. Lin, C.-F., Wang, S.-D.: Fuzzy Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 464–471 (2002)

    Article  Google Scholar 

  17. Wu, X., Srihari, R.: Incorporating prior knowledge with weighted margin support vector machines. In: Proceedings of the international conference on Knowledge discovery and data mining, pp. 326–333 (2004) ISBN:1-58113-888-9

    Google Scholar 

  18. Dorado, A., Djordjevic, D., Pedrycz, W., Izquierdo, E.: Efficient image selection for concept learning. In: IEE Proceedings Vision, Image & Signal Processing (to appear, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Izquierdo, E., Djordjevic, D. (2006). Using Relevance Feedback to Bridge the Semantic Gap. In: Detyniecki, M., Jose, J.M., Nürnberger, A., van Rijsbergen, C.J. (eds) Adaptive Multimedia Retrieval: User, Context, and Feedback. AMR 2005. Lecture Notes in Computer Science, vol 3877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11670834_2

Download citation

  • DOI: https://doi.org/10.1007/11670834_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32174-3

  • Online ISBN: 978-3-540-32175-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics