Skip to main content

An Enumeration Problem in Ordered Sets Leads to Possible Benchmarks for Run-Time Prediction Algorithms

  • Conference paper
Formal Concept Analysis

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3874))

  • 707 Accesses

Abstract

Motivated by the desire to estimate the number of order-preserving self maps of an ordered set, we compare three algorithms (Simple Sampling [4], Partial Backtracking [10] and Heuristic Sampling [1]) which predict how many nodes of a search tree are visited. The comparison is for the original algorithms that apply to backtracking and for modifications that apply to forward checking. We identify generic tree types and concrete, natural problems on which the algorithms predict incorrectly. We show that incorrect predictions not only occur because of large statistical variations but also because of (perceived) systemic biases of the prediction. Moreover, the quality of the prediction depends on the order of the variables. Our observations give new benchmarks for estimation and seem to make heuristic sampling the estimation algorithm of choice.

This work was sponsored by Louisiana Board of Regents RCS grant LEQSF (1999-02)-RD-A-27. Part of this work is part of Tushar Kulkarni’s Master’s Thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, P.C.: Heuristic Sampling: A method for predicting the performance of tree searching programs. SIAM J. Comput. 21, 295–315 (1992)

    Article  MATH  Google Scholar 

  2. Dechter, R.: Constraint networks. In: Encyclopedia of Artificial Intelligence, pp. 276–284. Wiley, New York (1992)

    Google Scholar 

  3. Duffus, D., Rödl, V., Sands, B., Woodrow, R.: Enumeration of order-preserving maps. Order 9, 15–29 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comp. 29, 121–136 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kulkarni, T.: Experimental evaluation of selected algorithms for estimating the cost of solving a constraint satisfaction problem. MS. Thesis, Louisiana Tech University (2001)

    Google Scholar 

  6. Kondrak, G., van Beek, P.: A theoretical evaluation of selected backtracking algorithms. Artificial Intelligence 89, 365–387 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu, W.-P., Wan, H.: Automorphisms and Isotone Self-Maps of Ordered Sets with Top and Bottom. Order 10, 105–110 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mackworth, A.K.: Constraint Satisfaction. In: Encyclopedia of Artificial Intelligence, pp. 284–293. Wiley, New York (1992)

    Google Scholar 

  9. Priestley, H.A., Ward, M.P.: A multipurpose backtracking algorithm. Journal of Symbolic Computation 18, 1–40 (1994)

    Article  MathSciNet  Google Scholar 

  10. Purdom, P.W.: Tree size by partial backtracking. SIAM J. Comput. 7, 481–491 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rival, I., Rutkowski, A.: Does almost every isotone self-map have a fixed point? In: Bolyai Math. Soc. Extremal Problems for Finite Sets. Bolyai Soc. Math. Studies 3, Viségrad, Hungary, pp. 413–422 (1991)

    Google Scholar 

  12. Schröder, B.: Ordered Sets – An Introduction. Birkhäuser Verlag, Boston (2003)

    MATH  Google Scholar 

  13. Schröder, B.: The Automorphism Conjecture for Small Sets and Series Parallel Sets. To appear in ORDER (2005)

    Google Scholar 

  14. Sillito, J.: Arc consistency for general constraint satisfaction problems and estimating the cost of solving constraint satisfaction problems. M. Sc. thesis, University of Alberta (2000)

    Google Scholar 

  15. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, New York (1993)

    Google Scholar 

  16. Xia, W.: Fixed point property and formal concept analysis. Order 9, 255–264 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kulkarni, T.S., Schröder, B.S.W. (2006). An Enumeration Problem in Ordered Sets Leads to Possible Benchmarks for Run-Time Prediction Algorithms. In: Missaoui, R., Schmidt, J. (eds) Formal Concept Analysis. Lecture Notes in Computer Science(), vol 3874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11671404_2

Download citation

  • DOI: https://doi.org/10.1007/11671404_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32203-0

  • Online ISBN: 978-3-540-32204-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics