Skip to main content

Partial Multicuts in Trees

  • Conference paper
Approximation and Online Algorithms (WAOA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3879))

Included in the following conference series:

Abstract

Let T = (V,E) be an undirected tree, in which each edge is associated with a non-negative cost, and let { s 1, t 1 }, ..., { s k , t k } be a collection of k distinct pairs of vertices. Given a requirement parameter tk, the partial multicut on a tree problem asks to find a minimum cost set of edges whose removal from T disconnects at least t out of these k pairs. This problem generalizes the well-known multicut on a tree problem, in which we are required to disconnect all given pairs.

The main contribution of this paper is an (\({\frac{8}{3}}+{\epsilon}\))-approximation algorithm for partial multicut on a tree, whose run time is strongly polynomial for any fixed ε > 0. This result is achieved by introducing problem-specific insight to the general framework of using the Lagrangian relaxation technique in approximation algorithms. Our algorithm utilizes a heuristic for the closely related prize-collecting variant, in which we are not required to disconnect all pairs, but rather incur penalties for failing to do so. We provide a Lagrangian multiplier preserving algorithm for the latter problem, with an approximation factor of 2. Finally, we present a new 2-approximation algorithm for multicut on a tree, based on LP-rounding.

Due to space limitations, several proofs are omitted from this extended abstract. We refer the reader to the full version of this paper [13], in which all missing proofs are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. Journal of Algorithms 39(2), 137–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Camion, P.: Matrices totalement unimodulaires et problèmes combinatoires. Thèse et Rapport Euratom, Université de Bruxelles (1963)

    Google Scholar 

  3. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hardness of approximating multicut and sparsest-cut. In: Proceedings of the 20th Annual IEEE Conference on Computational Complexity, pp. 144–153 (2005)

    Google Scholar 

  4. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23(4), 864–894 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. Journal of Algorithms 53, 55–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (to appear, 2006)

    Google Scholar 

  10. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 731–740 (2002)

    Google Scholar 

  11. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. Journal of the ACM 48(2), 274–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 767–775 (2002)

    Google Scholar 

  13. Levin, A., Segev, D.: Partial multicuts in trees (2005), Available at: http://www.math.tau.ac.il/~segevd/Papers/PMC-Jour.pdf

  14. Megiddo, N.: Combinatorial optimization with rational objective functions. Mathematics of Operations Research 4(4), 414–424 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Slavík, P.: Improved performance of the greedy algorithm for partial cover. Information Processing Letters 64(5), 251–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levin, A., Segev, D. (2006). Partial Multicuts in Trees. In: Erlebach, T., Persinao, G. (eds) Approximation and Online Algorithms. WAOA 2005. Lecture Notes in Computer Science, vol 3879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11671411_25

Download citation

  • DOI: https://doi.org/10.1007/11671411_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32207-8

  • Online ISBN: 978-3-540-32208-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics