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Abstract. Tree-width is a well-known metric on undirected graphs thaasures
how tree-like a graph is and gives a notion of graph decortipasihat proves
useful in algorithm development. Tree-width is charasedliby a game known as
the cops-and-robber game where a nhumber of cops chase a wbtie graph.
We consider the natural adaptation of this game to direatepls and show that
monotone strategies in the game yield a measure with aniasmbaotion of
graph decomposition that can be seen to describe how clasected graph is to
a directed acyclic graph (DAG). This promises to be usefuddneloping algo-
rithms on directed graphs. In particular, we show that tlblem of determining
the winner of a parity game is solvable in polynomial time oaphs of bounded
DAG-width. We also consider the relationship between DA@tw and other
measures of such as entanglement and directed tree-widéhc@sequence we
obtain is that certain NP-complete problems such as Hanidity and disjoint
paths are polynomial-time computable on graphs of bound&@-midth.

1 Introduction

The groundbreaking work of Robertson and Seymour in theiplgminor project has
focused much attention on tree-decompositions of graptisaasociated measures of
graph connectivity such as tree-width [13]. Aside from theferest in graph structure
theory, these notions have also proved very useful in theldpment of algorithms.
The tree-width of a graph is a measure of how tree-like thplyis, and it is found that
small tree-width allows for graph decompositions alongalhiecursive algorithms can
work. Many problems that are intractable in general can heedaefficiently on graphs
of bounded tree-width. These include such classical NPpbet® problems as finding
a Hamiltonian cycle in a graph or detecting if a graph is threlurable. Indeed, a
general result of Courcelle [4] shows that any property @dfie in monadic second-
order logic is solvable in linear time on graphs of fixed treidth.

The idea of designing algorithms that work on tree-decoritipos of the input has
been generalised from graphs to other kinds of structuresally the tree-width of a
structure is defined as that of the underlying connectivatyGaifman) graph. For in-
stance, the tree-width of a directed graph is simply thahefundirected graph we get
by forgetting the direction of edges, a process which lead®ine loss of information.
This loss may be significant if the algorithmic problems we iaterested in are inher-
ently directed. A good example is the problem of detectingiftanian cycles. While
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we know that this can be solved easily on graphs with smadhiviglth, there are also
directed graphs with very simple connectivity structureéclithave large tree-width. A
directed acyclic graptDAG) is a particularly simple structure, but we lose sight oéthi
when we erase the direction on the edges and find the undguyidirected graph to
be dense. Several proposals have been made (see [12, §,&hiet extend notions of
tree-decompositions and tree-width to directed graphpaltticular, Johnson et al. [8]
introduce the notion oflirected tree-widtlwhere directed acyclic graphs have width 0
and they show that Hamiltonicity can be solved for graphsafriled directed tree-
width in polynomial time. However, the definition and chdeaisations of this measure
are somewhat unwieldy and they have not, so far, resulte@iyrfurther developments
in algorithms.

We are especially interested in one particular problem oectiéd graphs, that of
determining the winner of parity game This is an infinite two-player game played
on a directed graph where the nodes are labelled by priarifiee players take turns
pushing a token along edges of the graph. The winner is detedby the parity of the
least priority occurring infinitely often in this infinite @y. Parity games have proved
useful in the development of model-checking algorithmsduisethe verification of
concurrent systems. The mogactalculus, introduced in [10], is a widely used logic for
the specification of such systems, encompassing a varietpdél and temporal logics.
The problem of determining, given a systednand a formulap of the p-calculus,
whether or not4 satisfiesy can be turned into a parity game (see [6]). The exact
complexity of solving parity games is an open problem thatrieaeived a large amount
of attention. It is known [9] that the problem is in NPco-NP and no polynomial
time algorithm is known. It follows from the general resuft@ourcelle [4] that there
is a polynomial time algorithm that solves parity games oapbs of bounded tree-
width. Obdrzalek [11] exhibited a particular such algom. He points out that the
algorithm would not give good bounds, for instance, on degacyclic graphs even
though solving the games on such graphs is easy. He asksewlie¢ne is a structural
property of directed graphs that would allow a fast algonitbn both bounded tree-
width structures and oDAGS.

In this paper, we give just such a generalisation. We inttedunew measure of the
connectivity of graphs that we calAG-width?. It is intermediate between tree-width
and directed tree-width, in that for any graghthe directed tree-width @ is no greater
than itsDAG-width which, in turn, is no greater than its tree-width. Shthe class of
structures oDAG-width £ + 1 or less includes all structures of tree-widttand more
(in particular,DAGs of arbitrarily high tree-width all haveAG-width 1).

The notion ofDAG-width can be understood as a simple adaptation of the game
of cops and robbefwhich characterises tree-width) to directed graphs. Témaeais
played by two players, one of whom controls a setcofops attempting to catch a
robber controlled by the other player. The cop player canevaw set of cops to any
nodes on the graph, while the robber can move along any patieigraph as long as
there is no cop currently on the path. Such games have besmsiely studied (see [15,
5,7,1,2)]). Itis known [15] that the cop player has a winnitrgtegy on an undirected

4 We understand that Obdrzalek has defined a similar measangaper to appear at SODA06.
We have not yet had an opportunity to see that paper.



graphg usingk + 1 cops if, and only if,G has tree-widthk. We consider the natural
adaptation of this game to directed graphs, by constraitiingobber to move along
directed paths. We show that the class of directed grapheathere is a monotone (in
a sense we make precise) strategyAarops to win is characterised by its width in a
decomposition that is a generalisation of tree-decomipositWe are then able to show
that the problem of determining the winner of a parity gamsoisable in polynomial
time on the class of graphs bAG-width k, for any fixedk.

In Section 2, we introduce some notation. Section 3 intredule cops and robber
game DAG-decompositions andAG-width and shows the equivalence between the ex-
istence of monotone winning strategies @aw-width. Also in Section 3 we discuss
some algorithmic aspects ®AG-width. Section 4 relateBAG-width to other mea-
sures of graph connectivity, and Section 5 demonstratedyagmial time algorithm
for solving parity games on graphs with bounds&s-width. All proofs appear in the
full version of the paper.

2 Preliminaries

We first fix some notation used throughout the paper. All gsapged are finite, directed
and simple unless otherwise stated.

We writew for the set of finite ordinals, i.e. natural numbers. For gveE w, we
write [n] for the set{1,...,n}. For every selV and everyk € w, we write [V]* for
the set of allk-element subsets df, that is,[V]* := {{z1,...,2x} C V : 2; # z;
whenever # j}. We write[V]=* for the set of allX C V with | X| < k.

LetG be a directed graph. We wrii€? for the set of its vertices anflY for the set of
its edgesE°P denotes the set of edges that results from reversing theséugeC Y,
i.e. B = {(w,v) : (v,w) € E}. The graphg°® is defined to béV'9, (E9)°P).

Atree-decomposition of a graghis a labelled tre€7 , (X;),cy 7 ) whereX, C V9
for each vertex € V7, for each edgdu,v) € EY there is a¢ € V7 such that
{u,v} C X;, and for eachy € V9, the set{t € V7 : v € X,} forms a connected
subtree of7. The width of a tree-decomposition is the cardinality of the larg&st
minus one. The tree-width df is the smallest: such thaig has a tree-decomposition
of width k.

LetD := (D, A) be a directed, acyclic grapbAG). The partial orde=p (0r < 4)
on D is the reflexive, transitive closure df. A root of a setX C D is a=<p-minimal
element ofX, that is,r € X is a root of X if there is noy € X such thaty <p r.
Analogously, deaf of X C D is a<p-maximal element.

3 Games, Strategies and Decompositions

This section contains the graph theoretical part of thispaffe defindAG-width and
its relation to graph searching games. As mentioned in ttrednction, the notion of
tree-width has a natural characterisation in terms of a enpsrobber game. Directed
tree-width has also been characterised in terms of suchgBhdut these games ap-
pear to be less intuitive. In this paper, we consider thegttiorward extension of the



cops and robber game to directed graphs. We show that thessggave a characterisa-
tion of the graph connectivity measure that we calG-width and introduce in Section
3.2. We comment on algorithmic properties in Section 3.3.

3.1 Cops and Robber Games

The Game. The Cops and Robber game on a digraph is a game wheops try to

catch a robber who may run along paths in the digraph. Whédedbber is confined
to moving along paths in the graph, the cops may move to artgwat any time. A
formal definition follows.

Definition 3.1 (Cops and Robber Gamejiven a graptg := (V, E), thek-cops and
robber game ong is played between two players, tieep and therobber player, as
follows:

— At the beginning, the cop player choos&s < [V]<F, and the robber player
chooses a vertex of V' \ Xy, giving position( X, 7).

— From position(X;,r;), the cop player chooseX;,; € [V]=*, and the robber
player chooses a vertex;, of V' \ X, such that there is a path fromto ;4
which does not pass through a vertexXn N X, ;. If no such vertex exists then
the robber player loses.

A playin the game is a (finite or infinite) sequence= (X, 79)(X1,71) ... oOf posi-
tions such that the transition frofX;, ;) to (X1, 7-+1) is a valid move by the rules
above and such that the play is finite if, and onlyrif, € X, for the final position
(X, ). Aplay is winning for the robber player if it is infinite.

As always when dealing with games we are less interested imgéesplay in the
game as in strategies that allow a player to win every plakiéngame. Winning strate-
gies for the cop player play a crucial role throughout thipgraWe therefore give a
precise definition of this notion.

Definition 3.2. Let G := (V, E) be a directed graph. £k-cop) strategyfor the cop
player is a functiory from [V]<F x V to [V]=k. A play (X0, 7o), (X1,71), . . . iS con-
sistentwith a strategyf if X;1 = f(X;,r;) forall i. The strategy is called avinning
strategy if every play consistent witlf is winning for the cop player.

Definition 3.3 (Game-width) The game-width g{G) of G is the leask such that the
cop player has a strategy to win thecops and robber game ¢h

Variants of the game where the robber moves first or only opecao be moved at
a time or the cops are lifted and placed in separate moveslaguivalent in that the
game-width of a graph does not depend on the variant.

Lemma 3.4. For every finite, non-empty, directed graghhe game-width g¢g) is at
least one and g¢%) = 1 if, and only if,G is acyclic.

Games similar to the one defined above have been used to ghe gaaracterisa-
tions of concepts like undirected tree-width [15] and aleadirected tree-width of [8].
Directed tree-width is invariant under reversing the edgfea graph. As we see be-
low, this is not true of the game-width we have defined. Oneption are graphs of
game-widthl, i.e. acyclic graphs.



Proposition 3.5. gw(G) = 1 if, and only if gwW(G°?) = 1.

Proposition 3.6. For any j, k with 2 < j < k, there exists a grapﬁ’kj such that
gw(7;/) = j and gw(Z)*®) = k.

In the sequel we consider a restriction of the cop player toatane strategies.

Definition 3.7 (Monotone strategy)

(i) A strategy for the cop player isop-monotond in playing the strategy, no vertex
is visited twice by cops. That is, (Xo, 7o), (X1,71) . .. is a play consistent with
the strategy, then for evefy< i < nandv € X; \ X;11,v ¢ X, forall j > i.

(i) A strategy for the cop player imbber-monotond in playing the strategy, the set
of vertices reachable by the robber is non-increasing.

Lemma 3.8. If the cop player has a cop-monotone or robber-monotone winstrat-
egy then they also have a winning strategy that is both, cog+abber-monotone.

From this lemma we can definer@onotone winning stratedy the obvious way.

3.2 DAG-Decompositions andbAG-Width

In this section we define the notion DAG-width which measures how close a given
graph is to being acyclic. We present a decomposition ottheegraphs that is some-
what similar in style to tree-decompositions of undireategphs. We show then that a
graph ha®AG-width k if, and only if, the cop player has a monotone winning strateg
in the k-cops and robber game played on that graph. We conclude @ritle properties
enjoyed byDAG-width.

Definition 3.9. Let G := (V, E) be a graph. A setV C V guardsa setV’ C V if
whenever there is an edge, v) € E such that, € V' andv ¢ V' thenv € V.

Definition 3.10 (DAG-decomposition)Let G := (V, E) be a directed graph. BAG-
decompositiolis a tuple® = (D, (X4)4cy») such that

(D1) Dis aDAG.

(D2) Uyeyo Xa = V.

(D3) Foralld <p d <p d’, XqNXgr C Xg.

(D4) For arootd, X, is guarded by.

(D5) For all(d, d/) S ED, XaN Xy guardst/ \Xd , whereXy = Ud’-<Dd” Xar.

The width of © is defined asnax{|X,| : d € VP}. The DAG-width of a graph is
defined as the minimal width of any of IBAG-decompositions.

The main result of this section is an equivalence betweenohoome strategies for
the cop player anBAG-decompositions.

Theorem 3.11. For any graphg there is aDAG-decomposition of of width if, and
only if, the cop player has a monotone winning strategy inktteeps and robber game
ong.



For algorithmic purposes, it is often useful to have a norfoah for decomposi-
tions. The following is similar to one for tree-decompasits as presented in [3].

Definition 3.12. A DAG-decompositionfD, (X4) ey o) is niceif

(N1) D has a unique root.

(N2) Everyd € VP has at most two successors.

(N3) If dy, d, are two successors df, thenX,, = X4, = X4,.

(N4) If d, is the unique successor df, then| X, AX 4, | < 1, whereA is the sym-
metric set difference operatadAB = (A\ B)U (B \ A)).

Nice decompositions can be thought of as a strategy wherelage pr remove only
one cop at a time. It should therefore not be surprising tleatan transform anpAG-
decomposition into one which is nice.

Theorem 3.13. If G has aDAG-decomposition of width, it has a niceDAG-decomposition
of width &.

Tree-width on undirected graphs also has a useful charsatien in terms of balanced
separators. We are able to obtain one direction of a similaracterisation foDAG-
width by showing that graphs of sma@lG-width admit small balancedirected sep-
arators The definition and proofs can be found in the full version. &\ show that
the DAG-width of graphs is closed under directed unions, which rssttered (see [8])
an important property of a reasonable decomposition otticegraphs.

3.3 Algorithmic Aspects of BoundedDAG-Width

We now consider algorithmic applications bBAG-width as well as the complexity of
deciding theDAG-width of a graph and computing an optimal decompositiore Tt
lowing is a direct consequence of the similar result for-tnegth.

Theorem 3.14. Given a digraphg and a natural numbet;, deciding if theDAG-width
of G is at mostk is NP-complete.

However, for any fixed, it is possible, in polynomial time, to decide if a graph has
DAG-width at mostk and to compute ®AG-decomposition of this width if it has. We
give an algorithm for this that is based on computing monetwmning strategies in
the k-cops and robber game.

Theorem 3.15. Let G be a directed graph and lét < w. There is a polynomial time
algorithm for deciding if the cop player has a monotone wirgnétrategy in thé-cops
and robber game og and for computing such a strategy.

Note also that the translation of strategies into decontiposiis computationally
easy, i.e. can be done in polynomial time. Since winningeffias can be computed in
polynomial time in the size of the graph, we get the following

Proposition 3.16. Given a graphGg of DAG-width k, a DAG-decomposition off of
width & can be computed in tim@ (|G| O ®).



Algorithms on graphs of bound@hG-width. As the directed tree-width of a graph is
bounded above by a constant factor offisG-width (see Proposition 4.1), any graph
property that can be decided in polynomial time on classegabhs of bounded di-
rected tree-width can be decided on classes of graphs ofledAG-width also. This
implies that properties such as Hamiltonicity that are knoavbe polynomial time on
graphs of bounded directed tree-width can be solved effigiem graphs of bounded
DAG-width too. We give a nontrivial application &fAG-width in Section 5 where we
show that parity games can be solved on graphs of boubdedwidth, something
which is not known for directed tree-width.

As for the relation to undirected tree-width, it is cleartthat all graph properties
that can be decided in polynomial time on graphs of boundsshwidth can also be
decided efficiently on graphs of boundedG-width. For instance, the 3-colourability
problem is known to be decidable in polynomial time on graptisounded tree-width.
However, the problem does not depend on the direction ofedge if the problem
was solvable in polynomial time on graphs of bounded-width then for every given
graph we could simply direct the edges so that it becomediacie. of DAG-width 1,
and solve the problem then. This shows that 3-colourabdityot solvable efficiently
on graphs of boundedAG-width unless PIME = NP. It also implies that Courcelle’s
theorem does fail fobAG-width, as 3-colourability is easily seen to ki&SO-definable.

The obvious question that arises is whether one can definigadleunotion of “di-
rected problem” and then show that evet80-definable “directed” graph problem can
be decided efficiently on graphs of bound®#G-width. This is part of ongoing work.

4 Relation to other graph connectivity measures

As a structural measure for undirected graphs, the coné¢@eswidth is of unrivaled
robustness. On the realm of directed graphs, however, iicabe seems to be split
among several different concepts. Compaiigs-width with tree-width, it is easily
seen that every tree-decomposition of an undirected g¥aplaDAG-decomposition of
the directed graph formed by replacing every edge by two &diee in each direction.
Conversely, th®AG-width of the graph formed in this way is exactly its tree-thidOn
the other hand a clique with an acyclic orientation provaeexample of a digraph with
smallDAG-width but arbitrarily large tree-width. In the sequel wergeareDAG-width
with other connectivity measures for digraphs, namelyad@e tree-width introduced
by Johnson et al. [8], and entanglement proposed by BerwamgkeGradel [2].

Directed tree-width.Aiming to reproduce the success of tree-decompositiontawa
ing divide-and-conquer algorithms, directed tree-widttagsociated to a tree-shaped
representation of the input graph. It was proved that thisasentation leads to effi-
cient algorithms for solving a particular class of NP-coetelproblems, including, e.g.,
Hamiltonicity, when directed tree-width is bounded. Unfmrately this generic method
does not cover many interesting problems. In particul&r efficient solution of parity
games on bounded tree-width has failed so far to generalidieected tree-width.

In terms of games, directed tree-width is characterised f@giction of the cops-
and-robber game fobAG-width, in which the robber is only permitted to move to



vertices where there exists a directed cop-free path frenmiended destination back
to his current position. On the basis of the game charaet@is it is clear that the
directed tree-width of a graph provides a lower bound fobis-width. Conversely,
the DAG-width of a graph cannot be bound in terms of its directed-tvekth.

Proposition 4.1.

(i) If a graph hasDAG-widthk, its directed tree-width is at mo8t + 1.
(i) There are graphs with arbitrarily larg®AG-width and directed tree-width.

Entanglement.The notion of entanglement measures the nesting depthexftdi cy-
cles in a graph. In terms of cops-and-robber games, it isirsdaby restricting the
mobility of both the robber and the cops so that in any roumel cop player may send
one cop to the robber’s current position (or do nothing) e/ttile robber can only move
to a successor of his current residence.

Unlike the other graph widths considered here, entangléim@ot associated to an
efficient tree-shaped graph representation. Neverthéesss shown that parity games
on arenas of bounded entanglement can be solved in polyhtiméa

The following proposition shows that having bound®2s5-width is more general
than having bounded entanglement. On the other hand, thespaperDAG-width and
entanglement can be at most logarithmic in the number ofrgveptices.

Proposition 4.2.

(i) If a graph has entanglemeht its DAG-width is at mosk + 1.
(i) There are graphs with arbitrarily large entanglement butwbAG-width 2.
(iii) 1f a graphG hasDAG-width k, its entanglement is at mogt + 1) - log [V'Y].

We conclude that, despite their conceptual affinity, deddree-width, entangle-
ment, andAG-width are rather different measures.

5 Parity Games on Graphs of BoundedAG-Width

A parity gameP is a tuple(V, Vo, E, £2) where(V, E) is a directed graph/, C V and
2.V — wis afunction assigning a priority to each node. There is 8s tif generality
in assuming that the range 6f is contained inn] wheren = |V| and we will make
this assumption from now on.

Intuitively, two players called Odd and Even play a parityngeby pushing a token
along the edges of the graph with Even playing when the tokemia vertex inl
and Odd playing otherwise. Formally, a play of the gafés an infinite sequence
m = (v; | i € w) such that(v;,v;41) € E for all i. We sayr is winning for Even if
liminf;_, £2(v;) is even andr is winning for Odd otherwise.

A strategyis a mapf : V<% — V such that for any sequenée, - - - v;) € V<%,
(vi, f(vo---v;)) € E. Aplaym = (v; | i € w) is consistent with Even playing
if wheneverv, € Vp, viy1 = f(vo---v;). Similarly, w is consistent with Odd play-
ing f if wheneverv; ¢ Vo, vi1 = f(vo---v;). A strategyf is winning for Even if
every play consistent with Even playirfgis winning for Even. A strategy imemory-
lessif wheneverug - - - u; andwy - - - v; are two sequences W<* with u; = v;, then



fluo---u;) = flvo---v;). Itis known that parity games are determined, i.e. for any
game and starting position, either Even or Odd has a winriiagegy and indeed, a
memoryless one. However, we do not assume in our constnutii the strategies we
consider are memoryless.

The following ordering onn] is useful in evaluating competing strategies. For pri-
oritiesi, j € [n] we sayi C j if either

(i) 7is odd andj is even, or
(i) < andj are both odd and< j, or
(iif) 7 andj are both even and < i.

Intuitively, ¢ C j if the priority i is “better” for player Odd thar.

We are interested in the problem of determining, given atypgame and starting
node, which player has a winning strategy. The complexitthisf problem in general
remains a major open question, as explained in Section 1.aMedstrate that parity
games are solvable on arenas of bounda@-width by an algorithm similar in spirit
to that of Obdrzalek [11]. That algorithm relies on thetfdat in a tree-decomposition,
a set ofk nodes guards all entries and exits to the part of the gragwigland thus all
cycles must pass through this set. In the casem@-decomposition, while the small
set guards all exits from the subgraph below it, there mayrberdimited number of
edges going into this subgraph. This is the main challenafeotlr algorithm addresses,
and is specifically solved in Lemmas 5.1, 5.2 and 5.3.

For a parity gamé& = (V, Vy, E, 2) considertU C V and a selV that guard</.
Fix a pair of strategieg andg. For anyv € U, there is exactly one play = (v; : i € w)
that is consistent with Even playingand Odd playing. Let 7’ be the maximal initial
segment ofr that is contained ify. Theoutcomeof the pair of strategief, ¢) (givenU
andv) is defined as follows.

winEven ifr’ = 7 andr is winning for Even;
outs o(U,v) :== ¢ winOdd  if 7’ = 7 andr is winning for Odd;
(vig1,p) f 7' =w---v; andp = min{2(v;) |0 < j <i+1}.

By construction, if out , (U, v) = (w,p) thenw € W. More generally, for any set
W C V, define the set of potential outcomeshin, written pot-outi?), to be the set
{winEvenwinOdd} U {(w, p) : w € W andp € [n]}. We define a partial ordes on
pot-out) which orders potential outcomes according to how good theya player
Odd. Itis the least partial order satisfying the followiranditions:

(i) winOdd < o for all outcomes;
(i) o <winEven for all outcomes;
(i) (w,p) < (w,p")ifpCp foralwe W.

In particular,(w, p) and(w’, p’) are incomparable ii» # w’. The idea is that iy andg’
are strategies such that gy(U, v) <out; ., (U, v) then player Odd is better off playing
strategyy rather thary’ in response to Even playing accordingfto

A single outcome is the result of fixing the strategies playgtoth players in the
sub-game induced by a set of vertidésIf we fix the strategy of player Even to ke



but consider all possible strategies that Odd may play, weocder these strategies ac-
cording to their outcome. If one strategy achieves outcomred anothes’ with o <o/,
there is no reason for Odd to consider the latter strategys;TWe define resul{U, v)
to be the set of outcomes that are achieved by the best samtbgt Odd may follow,
in response to Even playing accordingftoMore formally, result(U, v) is the set of
<-minimal elements in the sdb : o = out; (U, v) for someg}. Thus, result(U, v)

is an anti-chain in the partial ordgpot-outW), <), wherel is a set of guards fav.
We write pot-regi¥) for the set ofpotential resultsn . To be precise, pot-réd/) is
the set of all anti-chains in the partial ordgot-ou{i¥), <). By definition of the order
<, if either of winEven or winOdd is in the set resp(t/, v), then it is the sole element
of the set. Also, for eacty € W, there is at most onesuch thatw, p) € result (U, v)
so the number of distinct values that res(lf, v) can take is at mogtU| + 1)1 + 2
(in fact, (d + 1)W1, whered is the number of different priorities V). This is the
cardinality of the set pot-rég’).

We also abuse notation and extend the ordeto the set pot-ré¢$1”) pointwise.
That s, forr, s € pot-regWW) we writer < s if, for eacho € s, there is any’ € r with
o' < o. With this definition, the ordex on pot-re¢lV) admits greatest lower bounds.
Indeed, the greatest lower bound s of r ands can be obtained by taking the set<of
minimal elements in the set of outcomes s. One further piece of notation we use is
that we write Ref, v) for the set{result (U, v) : f is a strategy.

Suppose now thaP = (V,V, E, §2) is a parity game and we are giverDaG
decompositioD, (X4)4cy o) Of (V, E) of width £ that is nice in the sense of Defini-
tion 3.12. For eackd € VP, we write V; for the setX; \ X,. The key to the algorithm
is that we construct the set of results Rég v) for eachv € V. SinceV, is guarded
by X4, | Xa| < k and|Vy| < n, the number of distinct values of resy(Vy, v) as f
ranges over all possible strategies is at nfast 1)* + 2.

We define the following, which is our key data structure: Fenid) = {(v,r) :

v € Vgandr = resul(Vy,v) for some strategy }. Note that in the definitions of
result; (U, v) and Frontiefd), f andg range ovenll strategies and not just memoryless
ones. The bound on the number of possible values of r&8{ltv) guarantees that
|Frontiefd)| < n((n + 1)* 4 2). We aim to show how Frontiéf) can be constructed
from the set of frontiers of the successorsl/ah polynomial time. There are four cases
to consider.

Case 1:d has two successorg andes. In this case Xy = X., = X., by (N2).
We claim that Frontigil) = FrontieKe; ) U Frontierez) (see full paper).

Case 2d has one successeandX,; = X.. Inthis case, Fronti¢d) = Frontiefe).

Case 3:d has one successerand X; \ X. = {u}. Then, by (D3)u ¢ V.. Also,
by definition ofV, u € V,;. We conclude that; = V.. Moreover, sinceX, guardsV,,
there is no path from any elementf to u except throughX.. Hence, Frontidi) =
Frontier(e).

Case 4:d has one successerand X, \ X, = {u}. This is the critical case. Here
Va = V. U {u} and in order to construct Frontigh) we must determine the results of
all plays beginning at.

Consider the set of verticasin X; such that(u,v) € EY. These fall into two
categories. Eithes € X, orv € V.. Letxy,...,x, enumerate the first category and
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letvy, ..., v, enumerate the second. L@t= {(z;, min{2(z;), 2(u)}) : 1 <i < s}.
This is the set of outcomes obtained if play in the parity ganoeeeds directly from

to an element o ;. Note that as no two outcomes(@hare comparable with respect to
<4, O € pot-regX,). We write O for {{o} : 0 € O} ThatisO is the set of singleton
results obtained fron®. For eachv; we know, from Frontigfe), the set Red/, v;).
For each result € RegV,,v;), we write modr) for the set of outcomes defined by
modifyingr as follows. First, ifr contains an outcom:, p), we replace it by winEven
if min{p, 2(u)} is even and winOdd if itis odd. Secondly, for any pair, p) € r where

w # u, we replace it with(w, min{p, 2(u)}). Finally, we take the set ofl-minimal
elements from the resulting set. This is njod Note that mo@-) € pot-reX,). The
intuition is that modresult; (V. v;)) defines the set of best possible outcomes for player
Odd, if starting atu, the play goes tw; and from that point on, player Even plays
according to strategy. For eachl < i < m, let M; = {mod(r) : r € RegV,,v;)}.

We now wish to use the sets of result, O andO to construct the Ré¥;, v). We
need to distinguish between the cases when 1} (i.e. player Even plays from in
the parity game) and € V' \ 1} (i.e. player Odd plays).

The simpler case is whane 1}.

Lemmab5.1. If u € Vg, then Refly, u) = |J, M; U O.

The case when ¢ 1V} is somewhat trickier. To explain how we can obtain Rgsu)
in this case, we formulate the following lemma.

Lemma5.2. If u & Vj, thenr € RegVy, ) if, and only if, there is a function on the
set[m] with (i) € M; such that = O M, ,,,) c(2).

Lemma 5.2 suggests constructing Résw) by considering all possible choice
functionsc. However, as each séf; may have as many s + 1)* + 2 elements, there
arem(n+1)"+2 possibilities forc and our algorithm would be exponential. We consider
an alternative way of constructing R&%, u). Recall that Red/;, ) C pot-re§X,)
and the latter set has at mgst+1)* 42 elements. We check, for eache pot-re$X,),
in polynomial time, whether there is a choice functioas in Lemma 5.2 that yields
In particular, we take the following alternative charaistation of Re§V;, u).

Lemma5.3. If u ¢ Vp, thenr € RegVy, u) if, and only if, there is a seb C [m] with
|D| < |r| and a functiond on D with d(i) € M, such that

() »=0nN[1,cpd(i); and
(iiy foreachi ¢ D thereis anr; € M; withr < r;.

Now, anyr € pot-re§X,) has at most elements. Thus, to check whether suctran
is in RegVy, u) we cycle through all set® C [m] with k or fewer elements (and there
areO(n*) such sets) and for each one consider all candidate funeti@fsvhich there
areO(n*")). Having found al which givesr = O 1 [1p d(i), we then need to find a
suitabler; in eachi € [m] \ D. For this we must, at worst, go through all elements of
all the setsM; and compare them ta This can be done in tim@(n*+1).

We have now obtained the set REg, «). One barrier remains to completing the
construction of Fronti€rl). Elements(v, r) of Frontiee) may have outcomes in

11



of the form(u, p). Sincew is not in X4, these must be resolved by combining them
with results from Red/;, u). To be precise, let € RegV,,v) for somev € V, and
s € ReqVy, u). Define the combined resultr, s) as follows:

— if » does not contain an outcome of the fofm p), thenc(r, s) = r;
— otherwise,r contains a pai(u, p). Let s’ be obtained froms by replacing every

pair (w, q) by (w, min{p, ¢}). c(r,s) = rns’.
Intuitively, if » = result;(Ve,v) ands = resulty (Vy, u) thenc(r, s) is the set of<-
minimal outcomes that can be obtained if player Even plagsraing to f starting at
v until the nodeu is encountered and then switches to stratggy

Lemma5.4. For v € V., RegVy,v) = {c(r, s) : r € RegV,,v) ands € RegVy, u)}.
We now obtain Fronti€rl) = {(v,r) : r € RegVy, v)}.

Theorem 5.5. For eachk, there is a polynomiap and an algorithm running in time
O(p(n)) which determines the winner of parity games on all graphk @#tG-width at
mostk.

References

1. J. BARAT, Directed path-width and monotonicity in digraph searchifig appear irGraphs
and Combinatorics

2. D. BERWANGER AND E. GRADEL, Entanglement — a measure for the complexity of directed
graphs with applications to logic and gamés LPAR, 2004, pp. 209-223.

3. H. L. BODLAENDER, Treewidth: Algorithmic techniques and resulis MFCS, 1997,
pp. 19-36.

4. B. CoURCELLE, Graph rewriting: An algebraic and logic approachm Handbook of Theo-
retical Computer Science, Volume B: Formal Models and SeséB), J. van Leeuwan, ed.,
1990, pp. 193-242.

5. N. D. DENDRIS, L. M. KIROUSIS, AND D. M. THILIKOS, Fugitive-search games on
graphs and related parameter§CS, 172 (1997), pp. 233-254.

6. E. BMERSON, C. UTLA, AND A. SISTLA, On model checking for the-calculus and its
fragments TCS, 258 (2001), pp. 491-522.

7. G. GOTTLOB, N. LEONE, AND F. SCARCELLO, Robbers, marshals, and guards: Game
theoretic and logical characterizations of hypertree Wwidh PODS, 2001, pp. 195-201.

8. T. JOHNSON, N. ROBERTSON P. D. YMOUR, AND R. THOMAS, Directed tree-width
Journal of Combinatorial Theory, Series B, 82 (2001), p8-1%4.

9. M. JURDzINSKI, Deciding the winner in parity games is in UPco-UP, Information Pro-
cessing Letters, 68 (1998), pp. 119-124.

10. D. KozkN, Results on the propositional mu-calculTS, 27 (1983), pp. 333-354.

11. J. ®DRZALEK, Fast mu-calculus model checking when tree-width is bounideiroceed-
ings of 15th International Conference on Computer Aidedfiation, vol. 2725 of LNCS,
Springer, 2003, pp. 80-92.

12. B. A. REED, Introducing directed tree widthin 6th Twente Workshop on Graphs and Com-
binatorial Optimization, vol. 3 of Electron. Notes Dis@é#lath, Elsevier, 1999.

13. N. ROBERTSON ANDP. SEYMOUR, Graph Minors. Ill. Planar tree-widthJournal of Com-
binatorial Theory, Series B, 36 (1984), pp. 49-63.

14. M. SaFARI, D-width: A more natural measure for directed tree width MFCS 2005,
vol. 3618 of LNCS, Springer, 2005, pp. 745-756.

15. P. £YMOUR AND R. THOMAS, Graph searching, and a min-max theorem for tree-width
Journal of Combinatorial Theory, Series B, 58 (1993), pp-3&

12



