Abstract
For high-throughput screening of genetically modified plant cells, a system for the automatic analysis of huge collections of microscope images is needed to decide whether the cells are infected with fungi or not. To study the potential of feature based classification for this application, we compare different classifiers (kNN, SVM, MLP, LVQ) combined with several feature reduction techniques (PCA, LDA, Mutual Information, Fisher Discriminant Ratio, Recursive Feature Elimination). We achieve a significantly higher classification accuracy using a reduced feature vector instead of the full length feature vector.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bengtsson, E.: Computerized cell image analysis: Past, present, and future. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 395–407. Springer, Heidelberg (2003)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
da Costa, L.F., Cesar Jr., R.M.: Shape Analysis and Classification. CRC Press, Boca Raton (2001)
Duchene, J., Leclercq, S.: An optimal transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 10(6), 978–983 (1988)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1993)
Granlund, G.H.: Fourier preprocessing for hand print character recognition. IEEE Transactions on Computers C-21(3), 195–201 (1972)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2002)
Hu, M.-K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)
Ihlow, A., Seiffert, U.: Microscope color image segmentation for resistance analysis of barley cells against powdery mildew. In: 9. Workshop Farbbildverarbeitung, ZBS Zentrum für Bild- und Signalverarbeitung e.V. Ilmenau, Report Nr. 3/2003, pp. 59–66, Ostfildern-Nellingen, Germany (October 2003)
Ihlow, A., Seiffert, U.: Automating microscope colour image analysis using the Expectation Maximisation algorithm. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 536–543. Springer, Heidelberg (2004)
Ihlow, A., Seiffert, U.: Haustoria segmentation in microscope images of barley cells. In: Workshop ‘Farbbildverarbeitung’, Koblenz, October 2004, vol. 10, pp. 119–126. Der andere Verlag (2004)
Mokhtarian, F., Mackworth, A.: Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 8(1), 34–43 (1986)
Nadeau, C., Bengio, Y.: Inference for the generalization error. In: Advances in Neural Information Processing Systems, vol. 12. MIT Press, Cambridge (2000)
Schweizer, P., Pokorny, J., Abderhalden, O., Dudler, R.: A transient assay system for the functional assessment of defense-related genes in wheat. Molecular Plant-Microbe Interactions 12(8), 647–654 (1999)
Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. Biomedical Image Processing and Biomedical Visualization 1905, 861–870 (1993)
Tang, X., Stewart, W.K., Vincent, L., Huang, H., Marra, M., Gallager, S., Davis, C.S.: Automatic plankton image recognition. Artificial Intelligence Review 12(1-3), 177–199 (1998)
Theodordis, S., Koutroumbas, K.: Pattern Recognition. Elsevier Academic Press, San Diego (2003)
Thiran, J.-P., Macq, B.M.: Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Transactions on Biomedical Engineering 43(10), 1011–1020 (1996)
Weston, J., Elisseeff, A., BakIr, G., Sinz, F.: The SPIDER: object-orientated machine learning library, http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html
Wolberg, W.H., Street, W.N., Mangasarian, O.L.: Breast cytology diagnosis via digital image analysis. Analytical and Quantitative Cytology and Histology 15(6), 396–404 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tautenhahn, R., Ihlow, A., Seiffert, U. (2006). Adaptive Feature Selection for Classification of Microscope Images. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds) Fuzzy Logic and Applications. WILF 2005. Lecture Notes in Computer Science(), vol 3849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11676935_26
Download citation
DOI: https://doi.org/10.1007/11676935_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32529-1
Online ISBN: 978-3-540-32530-7
eBook Packages: Computer ScienceComputer Science (R0)