Skip to main content

3D Brain Tumor Segmentation Using Fuzzy Classification and Deformable Models

  • Conference paper
Fuzzy Logic and Applications (WILF 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3849))

Included in the following conference series:

Abstract

A new method that automatically detects and segments brain tumors in 3D MR images is presented. An initial detection is performed by a fuzzy possibilistic clustering technique and morphological operations, while a deformable model is used to achieve a precise segmentation. This method has been successfully applied on five 3D images with tumors of different sizes and different locations, showing that the combination of region-based and contour-based methods improves the segmentation of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Capelle, A.S., Colot, O., Fernandez-Maloigne, C.: Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information. Information Fusion 5, 203–216 (2004)

    Article  Google Scholar 

  2. Clark, M.C., Lawrence, L.O., Golgof, D.B., Velthuizen, R., Murtagh, F.R., Silbiger, M.S.: Automatic tumor segmentation using knowledge-based techniques. IEEE Transaction on Medical Imaging 17(2) (April 1998)

    Google Scholar 

  3. Colliot, O., Camara, O., Dewynter, R., Bloch, I.: Description of brain internal structures by means of spatial relations for MR image segmentation. In: The International Society of Optical Engineering. SPIE 2004 Medical Imaging, vol. 5370, pp. 444–455 (2004)

    Google Scholar 

  4. Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J., Thiran, J.: Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Transactions on Medical Imaging 23(10), 1301–1313 (2004)

    Article  Google Scholar 

  5. Ho, S., Bullitt, E., Gerig, G.: Level set evolution with region competition: Automatic 3D segmentation of brain tumors. In: International Conference on Pattern Recognition, pp. 532–535 (2002)

    Google Scholar 

  6. Kaus, M.R., Warfield, S.K., Nabavi, A., Chatzidakis, E., Black, P.M., Jolesz, F.A., Kikinis, R.: Segmentation of meningiomas and low grade gliomas in MRI. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1–10. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Lefohn, A., Cates, J., Whitaker, R.: Interactive, GPU-based level sets for 3d brain tumor segmentation. Technical report, University of Utah (April 2003)

    Google Scholar 

  8. Mangin, J.-F., Coulon, O., Frouin, V.: Robust brain segmentation using histogram scale-space analysis and mathematical morphology. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1230–1241. Springer, Heidelberg (1998)

    Google Scholar 

  9. Moon, N., Bullitt, E., Leemput, K.V., Gerig, G.: Model-based brain and tumor segmentation. In: Intenational Conference on Pattern Recognition, vol. 1, pp. 526–531 (2002)

    Google Scholar 

  10. Moonis, G., Liu, J., Udupa, J.K., Hackney, D.B.: Estimation of tumor volume with fuzzy-connectedness segmentation of MR images. American Journal of Neuroradiology 23, 352–363 (2002)

    Google Scholar 

  11. Pal, N.R., Pal, K., Bezdek, J.C.: C Bezdek. A mixed c-mean clustering model. In: IEEE International Conference on Fuzzy Systems, pp. 11–21 (1997)

    Google Scholar 

  12. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Medical Image Analysis 18(3), 217–231 (2004)

    Google Scholar 

  13. Soltanian-Zadeh, H., Kharrat, M., Donald, P.J.: Polynomial transformation for MRI feature extraction. In: SPIE, vol. 4322, pp. 1151–1161 (2001)

    Google Scholar 

  14. Xu, C., Prince, J.L.: Snakes, shapes and gradient vector flow. IEEE transaction on Image Processing 7, 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhu, Y., Yang, H.: Computerized tumor boundary detection using a Hopfield neural network. IEEE Transactions on Medical Imaging 16(1), 55–67 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khotanlou, H., Atif, J., Colliot, O., Bloch, I. (2006). 3D Brain Tumor Segmentation Using Fuzzy Classification and Deformable Models. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds) Fuzzy Logic and Applications. WILF 2005. Lecture Notes in Computer Science(), vol 3849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11676935_39

Download citation

  • DOI: https://doi.org/10.1007/11676935_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32529-1

  • Online ISBN: 978-3-540-32530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics