Abstract
A new method that automatically detects and segments brain tumors in 3D MR images is presented. An initial detection is performed by a fuzzy possibilistic clustering technique and morphological operations, while a deformable model is used to achieve a precise segmentation. This method has been successfully applied on five 3D images with tumors of different sizes and different locations, showing that the combination of region-based and contour-based methods improves the segmentation of brain tumors.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Capelle, A.S., Colot, O., Fernandez-Maloigne, C.: Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information. Information Fusion 5, 203–216 (2004)
Clark, M.C., Lawrence, L.O., Golgof, D.B., Velthuizen, R., Murtagh, F.R., Silbiger, M.S.: Automatic tumor segmentation using knowledge-based techniques. IEEE Transaction on Medical Imaging 17(2) (April 1998)
Colliot, O., Camara, O., Dewynter, R., Bloch, I.: Description of brain internal structures by means of spatial relations for MR image segmentation. In: The International Society of Optical Engineering. SPIE 2004 Medical Imaging, vol. 5370, pp. 444–455 (2004)
Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J., Thiran, J.: Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Transactions on Medical Imaging 23(10), 1301–1313 (2004)
Ho, S., Bullitt, E., Gerig, G.: Level set evolution with region competition: Automatic 3D segmentation of brain tumors. In: International Conference on Pattern Recognition, pp. 532–535 (2002)
Kaus, M.R., Warfield, S.K., Nabavi, A., Chatzidakis, E., Black, P.M., Jolesz, F.A., Kikinis, R.: Segmentation of meningiomas and low grade gliomas in MRI. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1–10. Springer, Heidelberg (1999)
Lefohn, A., Cates, J., Whitaker, R.: Interactive, GPU-based level sets for 3d brain tumor segmentation. Technical report, University of Utah (April 2003)
Mangin, J.-F., Coulon, O., Frouin, V.: Robust brain segmentation using histogram scale-space analysis and mathematical morphology. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1230–1241. Springer, Heidelberg (1998)
Moon, N., Bullitt, E., Leemput, K.V., Gerig, G.: Model-based brain and tumor segmentation. In: Intenational Conference on Pattern Recognition, vol. 1, pp. 526–531 (2002)
Moonis, G., Liu, J., Udupa, J.K., Hackney, D.B.: Estimation of tumor volume with fuzzy-connectedness segmentation of MR images. American Journal of Neuroradiology 23, 352–363 (2002)
Pal, N.R., Pal, K., Bezdek, J.C.: C Bezdek. A mixed c-mean clustering model. In: IEEE International Conference on Fuzzy Systems, pp. 11–21 (1997)
Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Medical Image Analysis 18(3), 217–231 (2004)
Soltanian-Zadeh, H., Kharrat, M., Donald, P.J.: Polynomial transformation for MRI feature extraction. In: SPIE, vol. 4322, pp. 1151–1161 (2001)
Xu, C., Prince, J.L.: Snakes, shapes and gradient vector flow. IEEE transaction on Image Processing 7, 359–369 (1998)
Zhu, Y., Yang, H.: Computerized tumor boundary detection using a Hopfield neural network. IEEE Transactions on Medical Imaging 16(1), 55–67 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khotanlou, H., Atif, J., Colliot, O., Bloch, I. (2006). 3D Brain Tumor Segmentation Using Fuzzy Classification and Deformable Models. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds) Fuzzy Logic and Applications. WILF 2005. Lecture Notes in Computer Science(), vol 3849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11676935_39
Download citation
DOI: https://doi.org/10.1007/11676935_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32529-1
Online ISBN: 978-3-540-32530-7
eBook Packages: Computer ScienceComputer Science (R0)