Abstract
Traditional methods for discovering frequent patterns from large databases assume equal weights for all items of the database. In the real world, managerial decisions are based on economic values attached to the item sets. In this paper, we first introduce the concept of the value based frequent item packages problems. Then we provide an integer linear programming (ILP) model for value based optimization problems in the context of transaction data. The specific problem discussed in this paper is to find an optimal set of item packages (or item sets making up the whole transaction) that returns maximum profit to the organization under some limited resources. The specification of this problem allows us to solve a number of practical decision problems, by applying the existing and new ILP solution techniques. The model has been implemented and tested with real life retail data. The test results are reported in the paper.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kleinberg, J., Papadimitriou, C., Raghavan, P.: A Microeconomic View of Data Mining. Data Mining and Knowledge Discovery 2, 311–324 (1998)
Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: Building an Association Rules Framework to Improve Product Assortment Decisions. Data Mining and Knowledge Discovery 8, 7–23 (2004)
Gopalan, R.P., Sucahyo, Y.G.: High Performance Frequent Patterns Extraction using Compressed FP-Tree. In: Proceedings of SIAM International Workshop on High Performance and Distributed Mining (HPDM 2004), Orlando, USA (2004)
Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: Proceedings of ACM SIGMOD, Dallas, TX (2000)
Liu, J., Pan, Y., Wang, K., Han, J.: Mining Frequent Item Sets by Opportunistic Projection. In: Proceedings of ACM SIGKDD, Edmonton, Alberta, Canada (2002)
Ali, K., Manganaris, S., Srikant, R.: Partial Classification using Association Rules. In: Proceedings of KDD 1997, Newport Beach, California (1997)
Viveros, M.S., Nearhos, J.P., Rothman, M.J.: Applying Data Mining Techniques to a Health Insurance Information System. In: Proceedings of VLDB 1996, Bombay, India (1996)
Demiriz, A., Bennett, K.P.: Optimization Approaches to Semi-Supervised Learning. In: Complementarity: Applications, Algorithms and Extensions, pp. 121–141. Kluwer Academic Publishers, Boston (2001)
Bradley, P., Gehrke, J., Ramakrishnan, R., Srikant, R.: Scaling Mining Algorithms to Large Databases. Communications of the ACM 45, 38–43 (2002)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. MIT Press, Cambridge (1996)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2001)
Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)
Achuthan, N.R., Caccetta, L., Hill, S.P.: A New Subtour Elimination Constraint for the Vehicle Routing Problem. E.J.O.R. 91, 573–586 (1996)
Achuthan, N.R., Caccetta, L., Hill, S.P.: Capacitated Vehicle Routing Problem: Some New Cutting Planes. Asia-Pacific Journal of Operational Research 15, 109–123 (1998)
Achuthan, N.R., Caccetta, L., Hill, S.P.: An Improved Branch and Cut Algorithm for the Capacitated Vehicle Routing Problem. Transportation Science 37, 153–169 (2003)
Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: The Use of Association Rules for Product Assortment Decisions: A Case Study. In: Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, San Diego (USA), August 15-18, pp. 254–260 (1999)
Webb, G.: Discovering Associations with Numeric Variables. In: Proceedings of the Knowledge Discovery in Databases (KDD 2001), San Francisco (USA), pp. 383–388 (2001)
Aumann, Y., Lindell, Y.: A Statistical Theory for Quantitative Association Rules. In: Proceedings of the Knowledge Discovery in Databases (KDD 1999), San Francisco (USA), pp. 262–270 (1999)
Marakas, G.M.: Modern Data Warehousing, Mining and Visualization. Prentice Hall, Upper Saddle River (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Achuthan, N.R., Gopalan, R.P., Rudra, A. (2006). Mining Value-Based Item Packages – An Integer Programming Approach. In: Williams, G.J., Simoff, S.J. (eds) Data Mining. Lecture Notes in Computer Science(), vol 3755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11677437_7
Download citation
DOI: https://doi.org/10.1007/11677437_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32547-5
Online ISBN: 978-3-540-32548-2
eBook Packages: Computer ScienceComputer Science (R0)